Loading [MathJax]/jax/output/HTML-CSS/jax.js

Monday, May 26, 2025

Entry 98

Level 6. Given q=e2πiτRamanujan's theta function f(a,b), its one-parameter version f(q)=f(q,q2), and the q-Pochhammer symbol. We have the sum-product identities,

A(q)=f(q,q5)f(q2)=n=0q2n2+2n(q,q2)n(q,q)2n+1(q2;q2)n=n=1α6(1q6n3)(1q6n3)=q1/4η(τ)η2(6τ)η2(2τ)η(3τ)B(q)=f(q3,q3)f(q2)=n=0q2n2(q,q2)n(q,q)2n(q2;q2)n=n=1α6(1q6n1)(1q6n5)=q1/12η2(3τ)η(2τ)η(6τ) where α6=(1qn)(1q3n)(1q2n)2 

Let a=q1/4A(q) and b=q1/12B(q). Then (a,b) for appropriate τ are eta quotients like in Level 4 and are actually radicals.

No comments:

Post a Comment