Level 6. Given q=e2πiτ, Ramanujan's theta function f(a,b), its one-parameter version f(−q)=f(−q,−q2), and the q-Pochhammer symbol. We have the sum-product identities,
A(q)=f(−q,−q5)f(−q2)=∞∑n=0q2n2+2n(q,q2)n(−q,q)2n+1(q2;q2)n=∞∏n=1α6(1−q6n−3)(1−q6n−3)=q−1/4η(τ)η2(6τ)η2(2τ)η(3τ)B(q)=f(−q3,−q3)f(−q2)=∞∑n=0q2n2(q,q2)n(−q,q)2n(q2;q2)n=∞∏n=1α6(1−q6n−1)(1−q6n−5)=q1/12η2(3τ)η(2τ)η(6τ) where α6=(1−qn)(1−q3n)(1−q2n)2
Let a=q1/4A(q) and b=q−1/12B(q). Then (a,b) for appropriate τ are eta quotients like in Level 4 and are actually radicals.
No comments:
Post a Comment