Given q=e2πiτ. Define the McKay-Thompson series of Class 6E for Monster (A128633) j6E(τ)=1(K6(q))3+1=(η(2τ)η3(3τ)η(τ)η3(6τ))3+1=(η2(2τ)η(3τ)η(τ)η2(6τ))4 where K6(q) is the cubic continued fraction. Just like the modular lambda function λ(τ), it seems j6E(τ) is also a product of fundamental units Un for appropriate τ. (Here is a sample Wolfram calculation for U5.) We choose d=12m with class number h(−d)=4 for even m=10,14,26,34 (also found in the previous entry)
j6E(√−10/32)=U22U65j6E(√−14/32)=U6U14j6E(√−26/32)=U42U226j6E(√−34/32)=U62U217 and odd m=7,11,19,31,59,
j6E(1+√−7/32)=U3√U321j6E(1+√−11/32)=U6√U33j6E(1+√−19/32)=U33√U57j6E(1+√−31/32)=U33√U393j6E(1+√−59/32)=U62√U177 Why this factors nicely I don't know. Also, some fundamental units Un for composite n may actually be squares. For example, U21=5+√212=(√3+√72)2U33=23+4√33=(2√3+√11)2 and so on, hence these √Un simplifies a bit.
No comments:
Post a Comment