Let q=e2πiτ. For convenience, define the Rogers-Ramanujan continued fraction in terms of τ, hence R(q)=R(τ). Given the Dedekind eta function η(τ), it is known that 1R(τ)−R(τ)=η(τ/5)η(5τ)+1Thus a quadraticR(τ)=−η(τ/5)η(5τ)−1+√(η(τ/5)η(5τ)+1)2+42 For example, let τ=√−1, then the formula gives us Ramanujan's evaluation, R(√−1)=4√5√ϕ−ϕ=0.284079… with golden ratio ϕ=1+√52. The formula also works when τ=1+√−n2 though R(τ) is now negative. Since it contains q1/5, one has to be careful with 5th roots. We give some nice new evaluations for discriminants d=5m with class number h(−d)=2 for m=(3,7,23,47) also using the golden ratio ϕ
1R5(1+√−3/52)−R5(1+√−3/52)−11=−(√5)3ϕ1R5(1+√−7/52)−R5(1+√−7/52)−11=−(√5)3ϕ31R5(1+√−23/52)−R5(1+√−23/52)−11=−(√5)3ϕ91R5(1+√−47/52)−R5(1+√−47/52)−11=−(√5)3ϕ15 Note the 5th powers R5(τ) and how well-behaved their evaluations are.
No comments:
Post a Comment