Processing math: 100%

Tuesday, May 27, 2025

Entry 109

Let q=e2πiτ and Dedekind eta function η(τ). Define the following K12(τ)=K12(q)=qn=1(1q12n1)(1q12n11)(1q12n5)(1q12n7)

It is connected to the mod 6 version, or the cubic continued fraction K6(τ)=K6(q)=q1/3n=1(1q6n1)(1q6n5)(1q6n3)(1q6n3)

by the quadratic relation 

1K12(τ)+K12(τ)=1K6(τ)K6(2τ)=η3(3τ)η(4τ)η(τ)η3(12τ)=(η2(4τ)η(6τ)η(2τ)η2(12τ))2+1

To find exact values of K12(τ), we use discriminants d=12m with class number h(d)=4 for even m=10,14,26,34 to get the orderly 1K12(10/34)+K12(10/34)=1+3(2+10+1+(2+10)2)1K12(14/34)+K12(14/34)=1+3(4+21+1+(4+21)2)1K12(26/34)+K12(26/34)=1+3(15+413+1+(15+413)2)1K12(34/34)+K12(34/34)=1+3(28+534+1+(28+534)2)
Update: It turns out all the quartic roots can be factored into fundamentals units Un, for example 2+10+1+(2+10)2=(1+2)(1+52)3=U2U35
More on Entry 110.

No comments:

Post a Comment