Let q=e2πiτ and Dedekind eta function η(τ). Define the following K12(τ)=K12(q)=q∞∏n=1(1−q12n−1)(1−q12n−11)(1−q12n−5)(1−q12n−7)
It is connected to the mod 6 version, or the cubic continued fraction K6(τ)=K6(q)=q1/3∞∏n=1(1−q6n−1)(1−q6n−5)(1−q6n−3)(1−q6n−3)
by the quadratic relation
1K12(τ)+K12(τ)=1K6(τ)K6(2τ)=η3(3τ)η(4τ)η(τ)η3(12τ)=(η2(4τ)η(6τ)η(2τ)η2(12τ))2+1
To find exact values of K12(τ), we use discriminants d=12m with class number h(−d)=4 for even m=10,14,26,34 to get the orderly 1K12(√−10/34)+K12(√−10/34)=1+√3(2+√10+√−1+(2+√10)2)1K12(√−14/34)+K12(√−14/34)=1+√3(4+√21+√1+(4+√21)2)1K12(√−26/34)+K12(√−26/34)=1+√3(15+4√13+√1+(15+4√13)2)1K12(√−34/34)+K12(√−34/34)=1+√3(28+5√34+√−1+(28+5√34)2)
Update: It turns out all the quartic roots can be factored into fundamentals units Un, for example 2+√10+√−1+(2+√10)2=(1+√2)(1+√52)3=U2U35
More on Entry 110.
No comments:
Post a Comment