Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, May 24, 2025

Entry 82

Level 13. Define dk=η(kτ) with Dedekind eta function η(kτ) and the McKay-Thompson series of class 13A for the Monster. j13A(τ)=(d1d13)2+13(d13d1)2+6

Examples. We select d=13m for class number h(d)=2 with m=7,31 as well as class number h(d)=6 with m=19,151 and find a well-behaved pattern just like for level 5 j13A(1+7/132)=(7)2j13A(1+31/132)=(231)2j13A(1+19/132)=(x19)2j13A(1+151/132)=(y151)2

where (x,y) are roots of cubics 19x338x2+21x9=0151y32567y2512y44=0 and so on for class number h(d)=10, etc.

No comments:

Post a Comment