Level 13. Define dk=η(kτ) with Dedekind eta function η(kτ) and the McKay-Thompson series of class 13A for the Monster. j13A(τ)=(d1d13)2+13(d13d1)2+6
Examples. We select d=13m for class number h(−d)=2 with m=7,31 as well as class number h(−d)=6 with m=19,151 and find a well-behaved pattern just like for level 5 j13A(1+√−7/132)=−(√7)2j13A(1+√−31/132)=−(2√31)2j13A(1+√−19/132)=−(x√19)2j13A(1+√−151/132)=−(y√151)2
where (x,y) are roots of cubics 19x3−38x2+21x−9=0151y3−2567y2−512y−44=0 and so on for class number h(−d)=10, etc.
No comments:
Post a Comment