Level 10. Given q=e2πiτ, the q-Pochhammer symbol (a;q)n, and Ramanujan's functions f(a,b) and φ(q) discussed in Entry 92. We have the sum-product identities
A(q)=f(−q,−q9)φ(−q)=∞∑n=0qn(n+3)/2(−q;q)n(q;q)n(q;q2)n+1=∞∏n=1α10(1−q10n−3)(1−q10n−7)B(q)=f(−q3,−q7)φ(−q)=∞∑n=0qn(n+1)/2(−q;q)n(q;q)n(q;q2)n+1=∞∏n=1α10(1−q10n−1)(1−q10n−9)
where α10=(1−q10n)2(1−qn)(1−q5n).
Let a=q4/5A(q) and b=q1/5B(q) then (a,b) are radicals for appropriate τ. Define their ratio a/b, K10(q)=q3/5∞∏n=1(1−q10n−1)(1−q10n−9)(1−q10n−3)(1−q10n−7) While no continued fraction is yet known for this, it is connected to the mod 5 version K5(q)=q1/5∞∏n=1(1−q5n−1)(1−q5n−4)(1−q5n−2)(1−q5n−3)
simply as, K10(q)=K5(q)K5(q2)
where K5(q)=R(q) is just the Rogers-Ramanujan continued fraction.
No comments:
Post a Comment