Processing math: 100%

Monday, May 26, 2025

Entry 102

Level 10. Given q=e2πiτ,  the q-Pochhammer symbol (a;q)n, and Ramanujan's functions f(a,b) and φ(q) discussed in Entry 92. We have the sum-product identities

A(q)=f(q,q9)φ(q)=n=0qn(n+3)/2(q;q)n(q;q)n(q;q2)n+1=n=1α10(1q10n3)(1q10n7)B(q)=f(q3,q7)φ(q)=n=0qn(n+1)/2(q;q)n(q;q)n(q;q2)n+1=n=1α10(1q10n1)(1q10n9)

where α10=(1q10n)2(1qn)(1q5n)

Let a=q4/5A(q) and b=q1/5B(q) then (a,b) are radicals for appropriate τ. Define their ratio a/b, K10(q)=q3/5n=1(1q10n1)(1q10n9)(1q10n3)(1q10n7) While no continued fraction is yet known for this, it is connected to the mod 5 version K5(q)=q1/5n=1(1q5n1)(1q5n4)(1q5n2)(1q5n3)

simply as, K10(q)=K5(q)K5(q2)

where K5(q)=R(q) is just the Rogers-Ramanujan continued fraction.

No comments:

Post a Comment