Level 8. Given q=e2πiτ, the q-Pochhammer symbol, and Ramanujan's functions f(a,b) and ψ(q) discussed in Entry 92. We have the Gollnitz-Gordon sum-product identities,
A(q)=f(−q,−q7)ψ(−q)=∞∑n=0qn2+2n(−q;q2)n(q2;q2)n=∞∏n=11(1−q8n−3)(1−q8n−4)(1−q8n−5)B(q)=f(−q3,−q5)ψ(−q)=∞∑n=0qn2(−q;q2)n(q2;q2)n=∞∏n=11(1−q8n−1)(1−q8n−4)(1−q8n−7)
Let a=q7/16A(q) and b=q−1/16B(q). Then (a,b), for appropriate τ, are actually radicals.
No comments:
Post a Comment