Processing math: 100%

Monday, May 26, 2025

Entry 100

Level 8. Given q=e2πiτ,  the q-Pochhammer symbol, and Ramanujan's functions f(a,b) and ψ(q) discussed in Entry 92. We have the Gollnitz-Gordon sum-product identities,

A(q)=f(q,q7)ψ(q)=n=0qn2+2n(q;q2)n(q2;q2)n=n=11(1q8n3)(1q8n4)(1q8n5)B(q)=f(q3,q5)ψ(q)=n=0qn2(q;q2)n(q2;q2)n=n=11(1q8n1)(1q8n4)(1q8n7)

Let a=q7/16A(q) and b=q1/16B(q). Then (a,b), for appropriate τ, are actually radicals.

No comments:

Post a Comment