Monday, May 26, 2025

Entry 104

Given q=e2πiτ and the q-continued fraction discussed in Entry 95K4(q)=2η(τ)η2(4τ)η3(2τ)=2q1/81+q1+q+q21+q2+q31+q3+

and compare it to the modular lambda function λ(τ)=(2η(12τ)η2(2τ)η3(τ))8

therefore the two are related by K4(τ)=(λ(2τ))1/8
Mathematica can calculate λ(τ) as ModularLambda[tau] and there is list of exact values in Mathworld which also implies exact values for K4(τ). But we will give a nice consistent form when d=4m has class number h(d)=2 for m=5,13,37 as λ(5)=12(1+52)3λ(13)=123(3+132)3λ(37)=1221(6+37)3
as well as the complex values 1λ(1+52)=12(152)31λ(1+132)=123(3132)31λ(1+372)=1221(637)3

No comments:

Post a Comment