Level 8. Recall the Level 4 continued fraction K4(q)=√2q1/8∞∏n=1(1−q4n−1)(1−q4n−3)(1−q4n−2)(1−q4n−2)=√2η(τ)η2(4τ)η3(2τ)=√2q1/81+q1+q+q21+q31+q2+q41+⋱=√2q1/81+q1+q+q21+q2+q31+q3+q41+q4+⋱ Compare its similarity to the Level 8 version using the ratio of (a,b) from Entry 100 K8(q)=q1/2∞∏n=1(1−q8n−1)(1−q8n−7)(1−q8n−3)(1−q8n−5)=q1/21+q+q21+q41+q3+q61+q81+⋱=q1/21+q+q21+q3+q41+q5+q61+q7+q81+q9+⋱
In fact, they have the quadratic relation 1K8(q)−K8(q)=(√2K4(q2))2=(η3(4τ)η(2τ)η2(8τ))2 while K4(q) which is an eta quotient can also be expressed another way1(K4(q))2−(K4(q))2=12(η(τ/2)η(2τ))4
No comments:
Post a Comment