Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tuesday, May 27, 2025

Entry 108

Let q=e2πiτ and the Dedekind eta function η(τ). Define the following K10(τ)=K10(q)=q3/5n=1(1q10n1)(1q10n9)(1q10n3)(1q10n7) While no continued fraction is yet known for this, it is connected to the mod 5 version, R(τ)=K5(q)=q1/5n=1(1q5n1)(1q5n4)(1q5n2)(1q5n3)

or the Rogers-Ramanujan continued fraction R(τ) by the simple relation

K10(q)=R(q)R(q2)K10(τ)=R(τ)R(2τ)

It is known that1R(τ)R(τ)=η(τ/5)η(5τ)+1 Thus a quadratic root R(τ)=η(τ/5)η(5τ)1+(η(τ/5)η(5τ)+1)2+42 which allows for easily computation of K10(τ). For example, given the golden ratio ϕ=1+52 and 1=i, R(12i)=0.511428=12(5ϕϕ2)(+45ϕ+ϕ2)R(i)=0.284079=(45ϕϕ)R(2i)=0.081002=12(5ϕϕ2)(45ϕ+ϕ2)which implies the exact valuesK10(12i)=R(12i)R(i)=0.145286K10(i)=R(i)R(2i)=0.203011

No comments:

Post a Comment