Let q=e2πiτ and the Dedekind eta function η(τ). Define the following K10(τ)=K10(q)=q3/5∞∏n=1(1−q10n−1)(1−q10n−9)(1−q10n−3)(1−q10n−7) While no continued fraction is yet known for this, it is connected to the mod 5 version, R(τ)=K5(q)=q1/5∞∏n=1(1−q5n−1)(1−q5n−4)(1−q5n−2)(1−q5n−3)
or the Rogers-Ramanujan continued fraction R(τ) by the simple relation
K10(q)=R(q)R(q2)K10(τ)=R(τ)R(2τ)
It is known that1R(τ)−R(τ)=η(τ/5)η(5τ)+1 Thus a quadratic root R(τ)=−η(τ/5)η(5τ)−1+√(η(τ/5)η(5τ)+1)2+42 which allows for easily computation of K10(τ). For example, given the golden ratio ϕ=1+√52 and √−1=i, R(12i)=0.511428⋯=12(√5ϕ−ϕ2)(+4√5√ϕ+ϕ2)R(i)=0.284079⋯=(4√5√ϕ−ϕ)R(2i)=0.081002⋯=12(√5ϕ−ϕ2)(−4√5√ϕ+ϕ2)which implies the exact valuesK10(12i)=R(12i)R(i)=0.145286…K10(i)=R(i)R(2i)=0.203011…
No comments:
Post a Comment