Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tuesday, May 27, 2025

Entry 107

Given q=e2πiτ and the two q-continued fractions K4(q)=2q1/8n=1(1q4n1)(1q4n3)(1q4n2)(1q4n2)=2q1/81+q1+q+q21+q2+q31+q3+ K8(q)=q1/2n=1(1q8n1)(1q8n7)(1q8n3)(1q8n5)=q1/21+q+q21+q3+q41+q5+q61+q7+

then we can evaluate them using the modular lambda function λ(τ) as K4(τ)=(λ(2τ))1/8 1K8(τ)K8(τ)=2(λ(4τ))1/4Mathematica can calculate λ(τ) as ModularLambda[tau] and there is a list of exact values in Mathworld. We have previously given examples for K4(τ)=(λ(2τ))1/8. For K8(τ), then for d=4m with class number h(d)=2 and m=10,58, 1K8(1410)K8(1410)=2(1+2)3+10=2U2U101K8(1458)K8(1458)=2(1+2)399+1358=2U32U58 where Un are fundamental units.

No comments:

Post a Comment