Given q=e2πiτ and the two q-continued fractions K4(q)=√2q1/8∞∏n=1(1−q4n−1)(1−q4n−3)(1−q4n−2)(1−q4n−2)=√2q1/81+q1+q+q21+q2+q31+q3+⋱ K8(q)=q1/2∞∏n=1(1−q8n−1)(1−q8n−7)(1−q8n−3)(1−q8n−5)=q1/21+q+q21+q3+q41+q5+q61+q7+⋱
then we can evaluate them using the modular lambda function λ(τ) as K4(τ)=(λ(2τ))1/8 1K8(τ)−K8(τ)=2(λ(4τ))1/4Mathematica can calculate λ(τ) as ModularLambda[tau] and there is a list of exact values in Mathworld. We have previously given examples for K4(τ)=(λ(2τ))1/8. For K8(τ), then for d=4m with class number h(−d)=2 and m=10,58, 1K8(14√−10)−K8(14√−10)=2(1+√2)√3+√10=2U2√U101K8(14√−58)−K8(14√−58)=2(1+√2)3√99+13√58=2U32√U58 where Un are fundamental units.
No comments:
Post a Comment