Given Gauss' constant G, the elliptic integral singular value K(kr), G=√2πK(k1)=2π∫π/20dθ√1+sin2θ=1√22F1(12,12;1;12)=2F1(12,12;1;−1)=(2π)−3/2Γ2(14)=0.834626… and modular lambda function λ(τ) calculated by Mathematica as ModularLambda[tau]. The two hypergeometrics can be expressed as 1√22F1(12,12;1;λ(i))=2F1(12,12;1;λ(1+i))=G while more complicated ones are 2F1(12,12;1;λ(1+2i/1))=21/4G2F1(12,12;1;λ(1+2i/3))=61/4((1+√3)2−√(2+√3)4−1)1/4G2F1(12,12;1;λ(1+2i/5))=21/4((1+√52)12−√(1+√52)24−1)1/4G and so on, with fundamental units U3=2+√3 and U5=1+√52, and where the λ(τ) are actually radicals. Curiously, λ(i) =λ(√3+4i)=12.
No comments:
Post a Comment