Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, May 31, 2025

Entry 122

Given Gauss' constant G, the elliptic integral singular value K(kr), G=2πK(k1)=2ππ/20dθ1+sin2θ=122F1(12,12;1;12)=2F1(12,12;1;1)=(2π)3/2Γ2(14)=0.834626 and modular lambda function λ(τ) calculated by Mathematica as ModularLambda[tau]. The two hypergeometrics can be expressed as 122F1(12,12;1;λ(i))=2F1(12,12;1;λ(1+i))=G while more complicated ones are 2F1(12,12;1;λ(1+2i/1))=21/4G2F1(12,12;1;λ(1+2i/3))=61/4((1+3)2(2+3)41)1/4G2F1(12,12;1;λ(1+2i/5))=21/4((1+52)12(1+52)241)1/4G and so on, with fundamental units U3=2+3 and U5=1+52, and where the λ(τ) are actually radicals. Curiously, λ(i) =λ(3+4i)=12.

No comments:

Post a Comment