Level 4. Given q=e2πiτ, Ramanujan's theta function f(a,b) and its one-parameter version as f(−q)=f(−q,−q2). We have the sum-product identities,
A(q)=f(−q,−q3)f(−q)=∞∑n=0qn2+n(q2;q2)n=∞∏n=1α4(1−q4n−2)(1−q4n−2)=q−1/12η(4τ)η(2τ)B(q)=f(−q2,−q2)f(−q)=∞∑n=0qn2(q2;q2)n=∞∏n=1α4(1−q4n−1)(1−q4n−3)=q1/24η2(2τ)η(τ)η(4τ)
where α4=(1−q2n)(1−q4n).
Let a=√2q1/12A(q) and b=q−1/24B(q), then (a,b) are just eta quotients and for appropriate quadratic τ are actually radicals. Furthermore, the difference of their 8th powers is also an 8th power −a8+b8=−(√2η(4τ)η(2τ))8+(η2(2τ)η(τ)η(4τ))8=(η(τ)η(2τ))8
No comments:
Post a Comment