Assume τ=n√−3 for some positive integer n. Given 2F1(a,b;c;z) where a+b=c=12 for the case a=16. Let z1=(1−2w)2 where w is w=2727+(η(τ/3)η(τ))12 Then (z1,z2) are algebraic numbers in
2F1(16,13;12;z1)=z2
Example:
If n=2 so τ=2√−3, then,
2F1(16,13;12;2527)=3√34
If n=4 so τ=4√−3, then,
2F1(16,13;12;452(√2+√3)2(1+√6)8)=58(1+√6)
No comments:
Post a Comment