The eta quotients (η(τ)η(kτ)) discussed previously are useful for j-function formulas. The easy levels k are when m=24/(k−1) is an integer. For prime k=(2,3,5,7,13) yields m=(24,12,6,4,2) which are the exponents of x below. j(τ)=(x−16)3x,withx=(√2η(2τ)η(τ))24
j(τ)=(x+3)3(x+27)x,withx=(√3η(3τ)η(τ))12
j(τ)=(x2+10x+5)3x,withx=(√5η(5τ)η(τ))6
j(τ)=(x2+5x+1)3(x2+13x+49)x,withx=(√7η(7τ)η(τ))4
j(τ)=(x4+7x3+20x2+19x+1)3(x2+5x+13)x,withx=(√13η(13τ)η(τ))2
No comments:
Post a Comment