This is the case \(a=\frac16\) of $${_2F_1\left(a ,a ;a +\tfrac12;-u\right)}=2^{a}\frac{\Gamma\big(a+\tfrac12\big)}{\sqrt\pi\,\Gamma(a)}\int_0^\infty\frac{dx}{(1+2u+\cosh x)^a}$$ we have $$\frac{1}{\color{red}{432}^{1/4}\,K(k_3)}\,\int_0^1 \frac{dx}{\sqrt{1-x}\,\sqrt[6]{x^5+\color{blue}{\tfrac{125}3}x^6}}=\,_2F_1\big(\tfrac16,\tfrac16;\tfrac23;-\color{blue}{\tfrac{125}{3}})=\frac{2}{3^{5/6}}$$
$$\frac{1}{\color{red}{432}^{1/4}\,K(k_3)}\,\int_0^1 \frac{dx}{\sqrt{1-x}\,\sqrt[6]{x^5+\color{blue}{2^7\phi^9}\, x^6}}=\,_2F_1\big(\tfrac16,\tfrac16;\tfrac23;-\color{blue}{2^7\phi^9})=\frac{3}{5^{5/6}}\phi^{-1}$$ with golden ratio \(phi\). (To be continued.)
No comments:
Post a Comment