As discussed in the previous entry, the eta quotients (η(τ)η(kτ)) are useful for j-function formulas. The easy levels k are when m=24/(k−1) is an integer. For square k=(4,9,25) yields m=(8,3,1) which can be found in the exponents below. j(τ)=(x2−48)3x2−64,withx=(√4η(4τ)η(τ))8+8
j(τ)=x3(x3−24)3x3−27,withx=(√9η(9τ)η(τ))3+3
j(τ)=−(x20+12x15+14x10−12x5+1)3x25(x10+11x5−1),withx−1−x=(√25η(25τ)η(τ))1+1
Alternatively,
j(τ)=(x2+192)3(x2−64)2,withx=(η(τ/2)η(2τ))8+8
j(τ)=x3(x3+216)3(x3−27)3,withx=(η(τ/3)η(3τ))3+3
j(τ)=−(r20−228r15+494r10+228r5+1)3r5(r10+11r5−1)5,withr−1−r=(η(τ/5)η(5τ))1+1 After some manipulation, these eta quotients are related to q-continued fractions with octahedral, tetrahedral, and icosahedral symmetries, with r=R(q) being the well-known Rogers-Ramanujan continued fraction.
No comments:
Post a Comment