Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, May 24, 2025

Entry 86

As discussed in the previous entry, the eta quotients (η(τ)η(kτ)) are useful for j-function formulas. The easy levels k are when m=24/(k1) is an integer. For square k=(4,9,25) yields m=(8,3,1) which can be found in the exponents below. j(τ)=(x248)3x264,withx=(4η(4τ)η(τ))8+8

j(τ)=x3(x324)3x327,withx=(9η(9τ)η(τ))3+3

j(τ)=(x20+12x15+14x1012x5+1)3x25(x10+11x51),withx1x=(25η(25τ)η(τ))1+1

Alternatively,

j(τ)=(x2+192)3(x264)2,withx=(η(τ/2)η(2τ))8+8

j(τ)=x3(x3+216)3(x327)3,withx=(η(τ/3)η(3τ))3+3

j(τ)=(r20228r15+494r10+228r5+1)3r5(r10+11r51)5,withr1r=(η(τ/5)η(5τ))1+1 After some manipulation, these eta quotients are related to q-continued fractions with octahedral, tetrahedral, and icosahedral symmetries, with r=R(q) being the well-known Rogers-Ramanujan continued fraction.

No comments:

Post a Comment