This is the case \(a=\frac14\) of $${_2F_1\left(a ,a ;a +\tfrac12;-u\right)}=2^{a}\frac{\Gamma\big(a+\tfrac12\big)}{\sqrt\pi\,\Gamma(a)}\int_0^\infty\frac{dx}{(1+2u+\cosh x)^a}$$ we have $$\frac{1}{2\sqrt2\,K(k_1)}\,\int_0^1 \frac{dx}{\sqrt{1-x}\,\sqrt[4]{x^3+\color{blue}{3}x^4}}=\,_2F_1\big(\tfrac{1}{4},\tfrac{1}{4};\tfrac{3}{4};-\color{blue}3\big) = \frac{2}{3^{3/4}}$$
$$\frac{1}{2\sqrt2\,K(k_1)}\,\int_0^1 \frac{dx}{\sqrt{1-x}\,\sqrt[4]{x^3+\color{blue}{80}x^4}}=\,_2F_1\big(\tfrac{1}{4},\tfrac{1}{4};\tfrac{3}{4};-\color{blue}{80}\big) = \frac35$$ (To be continued.)
No comments:
Post a Comment