Assume τ=n√−1 for some positive integer n. Given 2F1(a,b;c;z) where a+b=c=12 for the case a=112. Let j(τ) be the j-function and z1=(1−2w)2 where w is a root of 1234w(1−w)=j(τ) Or more simply z1=1−1728j(τ), then (z1,z2) are algebraic numbers in
2F1(112,512;12;z1)=z2
Examples:
If n=2 so τ=2√−1 and j(τ)=663, then,
2F1(112,512;12;13231331)=34⋅111/4
If n=3 so τ=3√−1, then,
2F1(112,512;12;(14√6)2(72+43√3)(21+20√3)3)=23(21+20√3)1/4
No comments:
Post a Comment