Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, May 24, 2025

Entry 90

The modular lambda function given by Mathematica as ModularLambda[tau] can solve 2F1(12,12,1,1λ(τ))2F1(12,12,1,λ(τ))=τ1 In the previous entry, we used the tribonacci constant for the case τ=11. More generally, to solve the higher Heegner numbers d=11,19,43,67,163 we can employ a slightly different method. For example, 2F1(12,12,1,1x)2F1(12,12,1,x)=163 This also has an exact solution expressible in radicals x6.094×1017 as the smaller root of the quadratic 16x216x+1=y and y is the real root of the cubic y3+6403203256y6403203256=0 The big number should be familiar and appears in Ramanujan's constant eπ163=6403203+743.99999999999925 For the other Heegner numbers d, one just replaces the big number with the cube nearest to eπd744, like 52803 for 67 and so on.

No comments:

Post a Comment