Let q=e2πiτ. In Entry 99, we gave the cubic continued fraction K6(q)=η(τ)η3(6τ)η(2τ)η3(3τ)=q1/31+q+q21+q2+q41+q3+q61+⋱
Define the McKay-Thompson series of Class 6E for Monster (A128633)j6E(τ)=1(K6(q))3+1=(η(2τ)η3(3τ)η(τ)η3(6τ))3+1=(η2(2τ)η(3τ)η(τ)η2(6τ))4
While it is possible to evaluate K6(q), doing it for j6E(τ) seems more "easy" since it is a 4th power. Let d=3m with class number h(−d)=2 for m=17,41,89. Then for τ1=1+√−17/32,τ2=1+√−41/32,τ3=1+√−89/32
we get the evaluations−√−3j6E(τ1)+√−13j6E(τ1)=23+2(−2+2√17)2/3+2(2+2√17)2/3−√−3j6E(τ2)+√−13j6E(τ2)=43+4(−2+10√41)2/3+4(2+10√41)2/3−√−3j6E(τ3)+√−13j6E(τ3)=103+10(−2+106√89)2/3+10(2+106√89)2/3
where the RHS are roots of cubics and all quadratic irrationals, for example 72+8√17=(2+2√17)2, are squares.
No comments:
Post a Comment