Level 5. Given q=e2πiτ, Ramanujan's theta function f(a,b), its one-parameter version f(−q)=f(−q,−q2), and the q-Pochhammer symbol. We have the Rogers-Ramanujan sum-product identities,
H(q)=f(−q,−q4)f(−q)=∞∑n=0qn2+n(q;q)n=∞∏n=11(1−q5n−2)(1−q5n−3)G(q)=f(−q2,−q3)f(−q)=∞∑n=0qn2(q;q)n=∞∏n=11(1−q5n−1)(1−q5n−4)
Their ratio is the Rogers-Ramanujan continued fraction
R(q)=ab=q11/60H(q)q−1/60G(q)=q1/5∞∏n=1(1−q5n−1)(1−q5n−2)(1−q5n−2)(1−q5n−3)=q1/51+q1+q21+q31+⋱
Let a=q11/60H(q) and b=q−1/60G(q). Then (a,b) for appropriate τ are actually radicals. Proof in Entry 97.
No comments:
Post a Comment