Processing math: 100%

Sunday, May 25, 2025

Entry 96

Level 5. Given q=e2πiτRamanujan's theta function f(a,b), its one-parameter version f(q)=f(q,q2), and the q-Pochhammer symbol. We have the Rogers-Ramanujan sum-product identities,

H(q)=f(q,q4)f(q)=n=0qn2+n(q;q)n=n=11(1q5n2)(1q5n3)G(q)=f(q2,q3)f(q)=n=0qn2(q;q)n=n=11(1q5n1)(1q5n4)

Their ratio is the Rogers-Ramanujan continued fraction

R(q)=ab=q11/60H(q)q1/60G(q)=q1/5n=1(1q5n1)(1q5n2)(1q5n2)(1q5n3)=q1/51+q1+q21+q31+

Let a=q11/60H(q) and b=q1/60G(q). Then (a,b) for appropriate τ are actually radicals. Proof in Entry 97.

No comments:

Post a Comment