Summarizing, we find tentative patterns for $$\text{I. Levels}\; 4n+1 = (5,13)\\ \text{II. Levels}\; 4n+2 = (6,10)\\ \text{III. Levels}\; 4n+3 = (3,7)\,$$The definitions for these functions are in previous entries, but it may be good to have a few selected values together to get an overall picture. Note that \(U_n\) are fundamental units, important to Pell equations.
I. Levels \(4n+3 = (3,7)\)
$$\quad \begin{align}j_{3A}\Big(\tfrac{1+\sqrt{-5/3}}{2}\Big) &= -(\sqrt3)^6\\ j_{3A}\Big(\tfrac{1+\sqrt{-17/3}}{2}\Big) &= -(2\sqrt3)^6\\ j_{3A}\Big(\tfrac{1+\sqrt{-41/3}}{2}\Big) &= -(4\sqrt3)^6 \\j_{3B}\Big(\tfrac{1+\sqrt{-5/3}}{2}\Big) &= -3^3U_{5}^2 =-3^3\left(\tfrac{1+\sqrt{5}}2\right)^2\\ j_{3B}\Big(\tfrac{1+\sqrt{-17/3}}{2}\Big) &= -3^3U_{17}^2 =-3^3\left(4+\sqrt{17}\right)^2\\ j_{3B}\Big(\tfrac{1+\sqrt{-41/3}}{2}\Big) &=-3^3U_{41}^2 =-3^3\left(32+5\sqrt{41}\right)^2 \end{align}$$ and one can observe its similarity to Level 7 $$\begin{align}j_{7A}\Big(\tfrac{1+\sqrt{-5/7}}{2}\Big) &= -(\sqrt7)^2\\ j_{7A}\Big(\tfrac{1+\sqrt{-13/7}}{2}\Big) &= -(3\sqrt7)^2 \\ j_{7A}\Big(\tfrac{1+\sqrt{-61/7}}{2}\Big) &= -(39\sqrt7)^2\\ j_{7B}\Big(\tfrac{1+\sqrt{-5/7}}{2}\Big) &= -7\,U_{5}^{2} = -7\left(\tfrac{1+\sqrt5}2\right)^{2}\\ j_{7B}\Big(\tfrac{1+\sqrt{-13/7}}{2}\Big) &= -7\,U_{13}^{2} = -7\left(\tfrac{3+\sqrt{13}}2\right)^{2}\\ j_{7B}\Big(\tfrac{1+\sqrt{-61/7}}{2}\Big) &= -7\,U_{61}^{2} = -7\left(\tfrac{39+5\sqrt{61}}2\right)^{2}\end{align}$$
II. Levels \(4n+1 = (5,13)\)
$$\begin{align}j_{5A}\Big(\tfrac{1+\sqrt{-23/5}}{2}\Big) &= -(6\sqrt{23})^2\\ j_{5A}\Big(\tfrac{1+\sqrt{-47/5}}{2}\Big) &= -(18\sqrt{47})^2\\ j_{5B}\Big(\tfrac{1+\sqrt{-23/5}}{2}\Big) &= -(\sqrt5)^3\left(\tfrac{1+\sqrt{5}}2\right)^9\\ j_{5B}\Big(\tfrac{1+\sqrt{-47/5}}{2}\Big) &= -(\sqrt5)^3\left(\tfrac{1+\sqrt{5}}2\right)^{15}\end{align}$$ where we see the golden ratio above and the bronze ratio below $$\begin{align}j_{13A}\Big(\tfrac{1+\sqrt{-7/13}}{2}\Big) & = -(\sqrt7)^2\\ j_{13A}\Big(\tfrac{1+\sqrt{-31/13}}{2}\Big) & = -(2\sqrt{31})^2\\ j_{13B}\Big(\tfrac{1+\sqrt{-7/13}}{2}\Big) & = {-\sqrt{13}\left(\tfrac{3+\sqrt{13}}2\right)}\\ j_{13B}\Big(\tfrac{1+\sqrt{-31/13}}{2}\Big) & = -\sqrt{13}\left(\tfrac{3+\sqrt{13}}2\right)^3 \end{align}$$
III. Levels \(4n+2 = (6,10)\)
$$\quad \begin{align}j_{6A}\Big(\tfrac{1+\sqrt{-11/3}}{2}\Big) &= -20^2\\ j_{6A}\Big(\tfrac{1+\sqrt{-59/3}}{2}\Big) &= -1060^2\\ j_{6B}\Big(\tfrac{1+\sqrt{-11/3}}{2}\Big) &= -U_{11}^2 = -\big(10+3\sqrt{11}\big)^2\\ j_{6B}\Big(\tfrac{1+\sqrt{-59/3}}{2}\Big) &= -U_{59}^2 = -\big(530+69\sqrt{59}\big)^2 \end{align}$$ compared to $$\begin{align}j_{10A}\big(\tfrac12\sqrt{-6/5}\big) &= 6^2\\ j_{10A}\big(\tfrac12\sqrt{-38/5}\big) &= 76^2\\ j_{10D}\big(\tfrac12\sqrt{-6/5}\big) &=\, U_{10}^{2}\, = \left(3+\sqrt{10}\right)^{2}\\ j_{10D}\big(\tfrac12\sqrt{-38/5}\big) &=\, U_{5}^{18}\, = \left(\tfrac{1+\sqrt5}2\right)^{18} \end{align}$$