Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, June 6, 2025

Entry 134

Given fundamental discriminants d=4m with class number h(d)=4, there are exactly five m=2p for prime p, namely p=7,17,23,41,71. The cases p=17,41 were in Entry 115 while p=7,23,71 which are p3mod4 will be tackled here. Define the two simple functionsα(n)=(n+n21)2β(n)=(n22+n21)2and letn1=2+22n2=26+182n3=1450+10262Then the first quartic unit can be an eighth power 

α(n1)=128(0+2+4+2)8α(n2)=128(4+32+8+32)8α(n3)=128(36+272+40+272)8 while the second is a product of quadratic units 

β(n1)=U7U14=(8+37)(22+7)β(n2)=U23U46=(25+523)(782+2323)β(n3)=U71U142=(3480+41371)(17102+28771) which gives the radical expressions of  1λ(14)=α(n1)β(n1),n1=2+221λ(46)=α(n2)β(n2),n2=26+1821λ(142)=α(n3)β(n3),n3=1450+10262 And since β(n)=(n22+n21)2, then they are also nested radicals that use only 2

No comments:

Post a Comment