Continuing from the previous entry, for d=4m with class number 8, the semiprime m=5p with p≡5mod8 is also well-behaved. And it involves the golden ratio. There are only four, namely p=13,29,53,101, thus m=5p=65,145,265,505. Ramanujan found the radicals below and the G-function have a common form
G5p=ϕkU1/4px1/2p
with powers of the golden ratio ϕ, fundamental unit Un, and x2p a root of a unit quartic
G65ϕ=(3+√132)1/4(√1+√658+√9+√658)1/2G145ϕ3=(5+√292)1/4(√9+√1458+√17+√1458)1/2G265ϕ3=(7+√532)1/4(√81+5√2658+√89+5√2658)1/2G505ϕ7=(10+√101)1/4(√105+5√5058+√113+5√5058)1/2
The case p≡1mod8 or p=41,89, thus m=5p=205,445 behaves slightly differently though
G205ϕ=(43+3√2052)1/8(√−1+√418+√7+√418)G445ϕ3/2=(21+√4452)1/4(√5+√898+√13+√898)
How Ramanujan found these is a mystery.
No comments:
Post a Comment