Ramanujan's theory of elliptic functions to alternative bases considers the hypergeometric function 2F1(a,b;c;z) with a+b=c=1 for the cases a=16,14,13,12. We can relate this to the McKay-Thompson series jn=jn(τ) for the Monster defined in Entry 145 for n=1,2,3,4. Define,
α1(τ)=12(1−√1−1728j1(τ))
where j=j1(τ) is the j-function. Let α1=α1(τ). Then we conjecture that,
2F1(16,56,1,1−α1)2F1(16,56,1,α1)=−τ√−1
as well as
j1(τ)=432α1(1−α1)=((η(τ)η(2τ))8+28(η(2τ)η(τ))16)3=(2F1(16,56,1,α1)η2(τ))24/2
Example. Let τ=√−3. Then α1=15√5(−1+√52)5 solves 2F1(16,56,1,1−α1)2F1(16,56,1,α1)=√3
since −τ√−1=−√3i×i=√3.
No comments:
Post a Comment