Summarizing the McKay-Thompson series of the Monster discussed in Entries 140-144,
j1=((η(τ)η(2τ))8+28(η(2τ)η(τ))16)3j2=((η(τ)η(2τ))12+26(η(2τ)η(τ))12)2j3=((η(τ)η(3τ))6+33(η(3τ)η(τ))6)2j4=((η(τ)η(4τ))4+42(η(4τ)η(τ))4)2=(η2(2τ)η(τ)η(4τ))24j6=((η(τ)η(3τ)η(2τ)η(6τ))3+23(η(2τ)η(6τ)η(τ)η(3τ))3)2
where j1(τ) is the j-function. Let τ be complex quadratics τ=12√−d or τ=12+√−d such that the jn(τ) are radicals. For the following special τ, then jn(τ) are integers
j1(τ)whereτ=√−dford=1,2,3,4,7,andτ=1+√−d2ford=1,3,7,11,19,127,43,67,163.
j2(τ)whereτ=√−d2ford=4,6,10,18,22,58,andτ=1+√−d2ford=5,7,9,13,25,37.
j3(τ)whereτ=√−d/32ford=4,8,16,20,andτ=1+√−d/32ford=5,9,17,25,41,49,89.
j4(τ)whereτ=√−d2ford=3,7,andτ=1+√−d2ford=1,2,4.
j6(τ)whereτ=√−d/32ford=10,14,26,34,andτ=1+√−d/32ford=7,11,19,31,59.
No comments:
Post a Comment