Processing math: 100%

Monday, June 9, 2025

Entry 151

Ramanujan's theory of elliptic functions to alternative bases can be related to the McKay-Thompson series jn=jn(τ) for the Monster defined in Entry 145. Define,

α2(τ)=64(η(τ)η(2τ))24+64=(8(η(τ/2)η(2τ))8+8)2

Let α2=α2(τ). Then we conjecture that,

2F1(14,34,1,1α2)2F1(14,34,1,α2)=τ2

as well as

j2(τ)=64α2(1α2)=((η(τ)η(2τ))12+26(η(2τ)η(τ))12)2=(2F1(14,34,1,α2)η2(τ)×η(τ)η(2τ))24/3

Example. Let τ=3. Then α2=13(2+3)2(13+43) solves 2F1(14,34,1,1α2)2F1(14,34,1,α2)=2×3

No comments:

Post a Comment