Ramanujan's theory of elliptic functions to alternative bases can be related to the McKay-Thompson series jn=jn(τ) for the Monster defined in Entry 145. Define,
α2(τ)=64(η(τ)η(2τ))24+64=(8(η(τ/2)η(2τ))8+8)2
Let α2=α2(τ). Then we conjecture that,
2F1(14,34,1,1−α2)2F1(14,34,1,α2)=−τ√−2
as well as
j2(τ)=64α2(1−α2)=((η(τ)η(2τ))12+26(η(2τ)η(τ))12)2=(2F1(14,34,1,α2)η2(τ)×η(τ)η(2τ))24/3
Example. Let τ=√−3. Then α2=13(2+√3)2(13+4√3) solves 2F1(14,34,1,1−α2)2F1(14,34,1,α2)=√2×√3
No comments:
Post a Comment