We relate Ramanujan's theory of elliptic functions to alternative bases to the McKay-Thompson series \(j_n = j_n(\tau)\) for the Monster defined in Entry 145. Define,
$$\alpha_3(\tau) = \frac{27}{\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{12}+27} = \left(\frac{3}{\left(\frac{\eta(\tau/3)}{\eta(3\tau)}\right)^{3}+3}\right)^3$$
Let \(\alpha_3 = \alpha_3(\tau)\). Then we conjecture that,
$$\frac{_2F_1\big(\frac13,\frac23,1,\,1-\alpha_3\big)}{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)}=-\tau\sqrt{-3}$$ as well as
$$\begin{align}j_{3}(\tau) &= \frac{27}{\alpha_3\,(1-\alpha_3)}\\ &= \left(\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{6}+3^3 \left(\frac{\eta(3\tau)}{\eta(\tau)}\right)^{6}\right)^2\\ &= \left(\frac{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)}{\eta^2(\tau)} \times\frac{\eta(\tau)}{\eta(3\tau)}\right)^{24/4}\end{align}$$
Example. Let \(\tau =\sqrt{-3}\). Then \(\alpha_3=\frac1{250}(187-171\cdot2^{1/3}+18\cdot2^{2/3})\) solves $$\frac{_2F_1\big(\frac13,\frac23,1,\,1-\alpha_3\big)}{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)}=\sqrt3\times\sqrt3$$
No comments:
Post a Comment