We continue with closed-forms for the Dedekind eta function η2(√−d) for d=11,19,43,67,163. As discussed in Entry 159, the closed-form for the complete elliptic integral of the first kind K(kd) then necessarily follows.
η2(√−11)=1x211Γ(111)Γ(311)Γ(411)Γ(511)Γ(911)111/4(2π)3
η2(√−43)=1x243Γ(143)Γ(443)Γ(643)Γ(943)…Γ(4143)431/4(2π)11
η2(√−67)=1x267Γ(167)Γ(467)Γ(667)Γ(967)…Γ(6567)671/4(2π)17
η2(√−163)=1x2163Γ(1163)Γ(4163)Γ(6163)Γ(9163)…Γ(161163)1631/4(2π)41
where the xd are the real roots of the following simple cubics, respectively
x3−2x2+2x−2=0x3−2x−2=0x3−2x2−2=0x3−2x2−2x−2=0x3−6x2+4x−2=0
The numerators, for example, of Γ(n19) can be found using the Kronecker symbol and this Wolfram command which yields the 19−12=9 numerators as n=1,4,5,6,7,9,11,16,17.
No comments:
Post a Comment