Processing math: 100%

Wednesday, June 11, 2025

Entry 160

We continue with closed-forms for the Dedekind eta function η2(d) for d=11,19,43,67,163. As discussed in Entry 159, the closed-form for the complete elliptic integral of the first kind K(kd) then necessarily follows. 

η2(11)=1x211Γ(111)Γ(311)Γ(411)Γ(511)Γ(911)111/4(2π)3

η2(19)=1x219Γ(119)Γ(419)Γ(519)Γ(619)Γ(1719)191/4(2π)5

η2(43)=1x243Γ(143)Γ(443)Γ(643)Γ(943)Γ(4143)431/4(2π)11

η2(67)=1x267Γ(167)Γ(467)Γ(667)Γ(967)Γ(6567)671/4(2π)17

η2(163)=1x2163Γ(1163)Γ(4163)Γ(6163)Γ(9163)Γ(161163)1631/4(2π)41

where the xd are the real roots of the following simple cubics, respectively

x32x2+2x2=0x32x2=0x32x22=0x32x22x2=0x36x2+4x2=0

The numerators, for example, of Γ(n19) can be found using the Kronecker symbol and this Wolfram command which yields the 1912=9 numerators as n=1,4,5,6,7,9,11,16,17.

No comments:

Post a Comment