Processing math: 100%

Tuesday, June 3, 2025

Entry 131

Given 2F1(a,b;c;z) and Dedekind eta function η(τ) where τ=1+n12 for positive integer n. Then for type a+b=c=34 2F1(14,12;34;(12γ1)2),1γ11=164(2η(2τ)η(τ))242F1(16,712;34;(12γ2)2),γ2=?2F1(18,58;34;(12γ3)2),1γ31=164(2η(2τ)η(τ))242F1(112,23;34;(12γ4)2),γ4=?

For this type, there are infinitely many hypergeometrics such that both (z1,z2) in 2F1(a,b;c;z1)=z2
are algebraic numbers when n is a positive integer. Examples: Let τ=1+512

2F1(14,12;34;8081)=95

2F1(18,58;34;2592025921)=351611/4

No comments:

Post a Comment