Given 2F1(a,b;c;z) and Dedekind eta function η(τ) where τ=1+n√−12 for positive integer n. Then for type a+b=c=34 2F1(14,12;34;(1−2γ1)2),1γ1−1=√−164(√2η(2τ)η(τ))242F1(16,712;34;(1−2γ2)2),γ2=?2F1(18,58;34;(1−2γ3)2),1γ3−1=−164(√2η(2τ)η(τ))242F1(112,23;34;(1−2γ4)2),γ4=?
For this type, there are infinitely many hypergeometrics such that both (z1,z2) in 2F1(a,b;c;z1)=z2
are algebraic numbers when n is a positive integer. Examples: Let τ=1+5√−12,
2F1(14,12;34;8081)=95
2F1(18,58;34;2592025921)=351611/4
No comments:
Post a Comment