There are only four fundamental d=4p with class number 4, namely p=17,73,97,193. Given the Kronecker symbol (dm), we propose
K(k17)=√2π2√681(U17)1/8(√−3+√178+√5+√178)3(68∏m=1[Γ(m68)](−68m))1/8K(k73)=√2π2√2921(U73)1/8(√1+√738+√9+√738)3(292∏m=1[Γ(m292)](−292m))1/8K(k97)=√2π2√3881(U97)1/8(√5+√978+√13+√978)3(388∏m=1[Γ(m388)](−388m))1/8K(k193)=√2π2√7721(U193)1/8(√22+2√1938+√30+2√1938)3(772∏m=1[Γ(m772)](−772m))1/8 where the Un are fundamental units U17=4+√17 U73=1068+125√73 U97=5604+569√97 U193=1764132+126985√193 Going to class number 6, the red exponent will now be 1/12.
No comments:
Post a Comment