Given 2F1(a,b;c;z) and Dedekind eta function η(τ) where τ=1+n√−32 for positive integer n. Then for type a+b=c=56 2F1(12,13;56;(1−2δ1)2),δ1=δ22F1(13,12;56;(1−2δ2)2),1δ2−1=√127(η(τ+13)η(τ))122F1(14,712;56;(1−2δ3)2),δ3=?2F1(16,23;56;(1−2δ4)2),1δ4−1=127(η(τ+13)η(τ))12 For this type, there are infinitely many hypergeometrics such that both (z1,z2) in 2F1(a,b;c;z1)=z2 are algebraic numbers when n is a positive integer. Note that 2F1(12,13;56;z)=2F1(13,12;56;z) so the first form is superfluous. Examples: Let τ=1+5√−32, 2F1(13,12;56;45)=35√5 2F1(16,23;56;8081)=35(9√5)1/3
No comments:
Post a Comment