Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tuesday, June 3, 2025

Entry 132

Given 2F1(a,b;c;z) and Dedekind eta function η(τ) where τ=1+n32 for positive integer n. Then for type a+b=c=56 2F1(12,13;56;(12δ1)2),δ1=δ22F1(13,12;56;(12δ2)2),1δ21=127(η(τ+13)η(τ))122F1(14,712;56;(12δ3)2),δ3=?2F1(16,23;56;(12δ4)2),1δ41=127(η(τ+13)η(τ))12 For this type, there are infinitely many hypergeometrics such that both (z1,z2) in 2F1(a,b;c;z1)=z2 are algebraic numbers when n is a positive integer. Note that 2F1(12,13;56;z)=2F1(13,12;56;z) so the first form is superfluous. Examples: Let τ=1+532, 2F1(13,12;56;45)=355 2F1(16,23;56;8081)=35(95)1/3

No comments:

Post a Comment