Ramanujan's theory of elliptic functions to alternative bases can be related to the McKay-Thompson series jn=jn(τ) for the Monster defined in Entry 145. Define,
α4(τ)=16(η(τ)η(4τ))8+16=(√2η(τ)η2(4τ)η3(2τ))8
Let α4=α4(τ). Then we conjecture that,
2F1(12,12,1,1−α4)2F1(12,12,1,α4)=−τ√−4 as well as
j4(τ)=16α4(1−α4)=((η(τ)η(4τ))4+42(η(4τ)η(τ))4)2=(η2(2τ)η(τ)η(4τ))24=(2F1(12,12,1,α4)η2(τ)×η(τ)η(4τ))24/5
Example. Let τ=√−3. Then α4=(√3−√2)4(√2−1)4 solves 2F1(12,12,1,1−α4)2F1(12,12,1,α4)=√4×√3 Alternatively and more familiar
2F1(12,12,1,1−λ(√−r))2F1(12,12,1,λ(√−r))=√r where λ(τ) is the modular lambda function.
No comments:
Post a Comment