Loading [MathJax]/jax/output/HTML-CSS/jax.js

Monday, June 9, 2025

Entry 153

Ramanujan's theory of elliptic functions to alternative bases can be related to the McKay-Thompson series jn=jn(τ) for the Monster defined in Entry 145. Define,

α4(τ)=16(η(τ)η(4τ))8+16=(2η(τ)η2(4τ)η3(2τ))8

Let α4=α4(τ). Then we conjecture that,

2F1(12,12,1,1α4)2F1(12,12,1,α4)=τ4 as well as

j4(τ)=16α4(1α4)=((η(τ)η(4τ))4+42(η(4τ)η(τ))4)2=(η2(2τ)η(τ)η(4τ))24=(2F1(12,12,1,α4)η2(τ)×η(τ)η(4τ))24/5

Example. Let τ=3. Then α4=(32)4(21)4 solves 2F1(12,12,1,1α4)2F1(12,12,1,α4)=4×3 Alternatively and more familiar

2F1(12,12,1,1λ(r))2F1(12,12,1,λ(r))=r where λ(τ) is the modular lambda function.

No comments:

Post a Comment