It turns out we can use the previous entries to parameterize the equation xn+yn=zn
for n=2,3,4. Given the square of the nome q=e2πiτ and assume the functions A(q),B(q),C(q). Define
γ=(8(η(τ/2)η(2τ))8+8)2=(C(q)A(q))2
Then we conjecture,
(C(q)2F1(14,34,1,γ)2)2?=γ(B(q)2F1(14,34,1,γ)2)2?=1−γ(A(q)2F1(14,34,1,γ)2)2?=1
where C(q),B(q),A(q) are defined by the relation and eta quotients below,
(C(q))2+(B(q))2=(A(q))2
(8η8(2τ)η4(τ))2+(η8(τ)η4(2τ))2=(η8(τ)+32η8(4τ)η4(2τ))2
Note also that A(q)=1+24∞∑n=1nqn1+qn=(ϑ2(0,q))4+(ϑ2(0,q))4=η8(τ)+32η8(4τ)η4(2τ)
where, in this particular instance, we let the Jacobi theta functions ϑn(0,q) use q=e2πiτ.
No comments:
Post a Comment