Processing math: 27%

Wednesday, June 25, 2025

Entry 200

There is a surprising relationship between solvable quintics and Pythagorean triples. Given

y5+Ay4+By3+Cy2+Dy+E=0

then there is an extremely broad solvable class with four free parameters (A,B,C,D) and E is only a quadratic with respect to the others. For simplicity, transform the quintic into depressed form,

x5+10cx3+10dx2+5ex+f=0

If c0 and the coefficients form the Pythagorean triple,

(c325c416cd2ce+10c2e+d2e2)2+(2c2d2cf+2de)2=(c3+25c4+16cd2ce10c2e+d2+e2)2 then the quintic is solvable in radicals. Expanding, the above becomes

(25c640c3d216d4+35c4e+28cd2e11c2e2+e32c2df2def+cf2)×c=W×c=0

where W is simply the constant term of Watson's sextic resolvent equated to zero. (We just multiplied it by c to get the Pythagorean form.)

Example. Let (c,d,e)=(1,2,3), then W factors as (f28)(f+36)=0. So another nice feature of these quintics is they come in pairs. Hence

x5+10x3+20x215x+28=0x5+10x3+20x215x36=0

are irreducible but solvable in radicals. And using the formulas above, their (c,d,e,f) yield the triple,

1202+642=1362

Entry 199

Combining the work of Felix Klein and Ramanujan, given the Ramanujan Gm and gm-functions. 

Conjecture: The following septics have a solvable Galois group

x7+7(172)x4+7(1+72)3x=4(4G16mG8m)x7+7(172)x4+7(1+72)3x=4(4g16m+g8m)

This is a version of Entry 148. For example, G5=(1+52)1/4, G13=(3+132)1/4, and G37=(6+37)1/4  yields

x7+7(172)x4+7(1+72)3x=2(25+135)x7+7(172)x4+7(1+72)3x=30(31+913)x7+7(172)x4+7(1+72)3x=60(2837+46837)

while g10=(1+52)1/2 and  g58=(5+292)1/2 yields

x7+7(172)x4+7(1+72)3x=6(65+275)x7+7(172)x4+7(1+72)3x=30(140989+2616329)

which are all solvable in radicals, and so on.

Entry 198

In Entry 190 and Entry 191, two relations between solvable quintics and Gm and gm were proposed. Going higher,

Conjecture: The following sextics have a solvable Galois group

x6+10x3+5x=4(4G16mG8m)x6+10x3+5x=4(4g16m+g8m)

For example, G5=(1+52)1/4 and g10=(1+52)1/2 yields

x6+10x3+5=2(25+135)xx6+10x3+5=6(65+275)x

which are solvable in radicals, and so on.

Monday, June 23, 2025

Entry 197

From Entry 195

21/4G71=x,wherex72x6x5+x4+x3+x2x1=0

We will now give the radical solution to this septic using the well-known cubic r3+r22r1=0 with roots r1,r2,r3=2cos(2π7),2cos(4π7),2cos(6π7)Define the function

yn=P(rn)=29323r220538r15494+(1193r21048r730)7×712yn+3=Q(rn)=29323r220538r15494(1193r21048r730)7×712

For example, y1=P(r1)219.6454. Then the real root of the septic is

x=2+y1/71+y1/72+y1/73+y1/74+y1/75+y1/767=2.1306068

In fact, the yn are the roots of a sextic with rather large coefficients,

y6+ay5+by4+cy3+dy2+ey4617=0

and where the constant term is a 7th power. This sextic is special since it can factor either over the square root extension 7×71 or the cubic extension 2cos(2π7).

Entry 196

In Entry 194

21/4G47=x,wherex5x32x22x1=0Ramanujan asked for the radical solution of this quintic. We give our version which partly uses the golden ratio ϕ

y1=12ϕ(13+47(2+895)55/4)y2=12ϕ(1347(2+895)55/4)y3=ϕ2(13+47(2+895)55/4)y4=ϕ2(1347(2+895)55/4)

then the real root of quintic is

21/4G47=x=y1/51+y1/52+y1/53+y1/545=1.73469134

In fact, the yn are the four roots of the quartic

3125y440625y3521250y2+55250y1=0

where the leading term is a 5th power 3125=55.

Entry 195

Continuing Entry 194 for Gd with d7mod8

IV. n = 7

There are only d=71,151,223,463,487 though, to prevent clutter, we include only the first two 

G71=21/4x,x72x6x5+x4+x3+x2x1=0G151=21/4x,x73x6x53x4x2x1=0 It's remarkable how small the coefficients are. We will solve these in radicals in another entry.

V. n = 9

There are only d=199,367,823,1087,1423 though again the first two 

G199=21/4x,x3(r2+3r+1)x2x+r=0,r3+4r2+r+1=0G367=21/4x,x3(r2+5r+1)x2(2r+1)x+r=0,r3+7r2+4r+1=0

As nonics, these also have small coefficients and are easier solved in radicals as they can be factored over a cubic extension.

Entry 194

Previous entries discussed Gd with d3mod8. For d7mod8 with odd class number h(d)=n, then the formula is slightly different

Gd=21/4x

where x is a root of an algebraic equation of degree n that is solvable in radicals and a unit constant term.

I. n = 1 G7=21/4x,x1=0II. n = 3

G23=21/4x,x3x1=0G31=21/4x,x3x21=0III. n = 5

G47=21/4x,x5x32x22x1=0G79=21/4x,x53x4+2x3x2+x1=0G103=21/4x,x5x43x33x22x1=0G127=21/4x,x53x4x3+2x2+x1=0

G23 and G31 were known to Ramanujan and their x involve the plastic ratio and supergolden ratio, respectively. In Bernt's "The Problems Submitted by Ramanujan to the JIMS" (p.17) Ramanujan asked about solving two quintics in radicals with d=47,79 so he knew G47 and G79 though I'm not sure for G103 and G127.  

Entry 193

Continuing from Entry 192, some more Gd,

G59=21/4x,x32rx2+2(r2r)x2=0,r32r21=0

and the shared pairs

G19=21/4x,x32rx2+(r25r2)x2=0,r=0G379=21/4x,x32rx2+(r25r2)x2=0,r36r25r2=0

and

G107=21/4x,x32rx2+(r2r2)x2=0,r3r4=0G139=21/4x,x32rx2+(r2r2)x2=0,r3r22r4=0

The first one has additional context since the real root of r32r21=0 is the supersilver ratio, a cubic analogue of the silver ratio 1+2.

Entry 192

From Entry 191,

G11=21/4x,x32x2+2x2=0

so x is the real root of a cubic x32ax2+2bx2=0 where a=b=1. The discriminant d=11 has class number n=h(d)=1. For Gd, one can observe that if d3mod8, then (a,b) are algebraic numbers at most of degree n. Thus if n=3, then (a,b) are roots of cubics

There are 16 fundamental discriminants d with class number n=3 and the largest is d=907. The smallest two d=23,31 have different form d7mod8, and will be discussed in another entry while the rest are d3mod8,

G11=21/4x,x32rx2+2x2=0,r=1G331=21/4x,x32rx2+2x2=0,r37r2+9r4=0

and

G43=21/4x,x32x2+2rx2=0,r=0G83=21/4x,x32x2+2rx2=0,r3r23r+4=0

and

G67=21/4x,x32rx22rx2=0,r=1G211=21/4x,x32rx22rx2=0,r33r2+r2=0G283=21/4x,x32rx22rx2=0,r34r21=0

and

G163=21/4x,x32rx2+4x2=0,r=3G907=21/4x,x32rx2+4x2=0,r329r2+85r66=0

P.S. These are the simplest cubic "templates" and it seems interesting the largest discriminants for class numbers 1 and 3 have a Gd that share the same template. For class number 5, they get more complicated though. 

Entry 191

We propose another nice relation between quintics and Gm and gm.

Conjecture: The following quintics have a solvable Galois group

x3(x2+5x+40)=43(4G16mG8m)3x3(x2+5x+40)=43(4g16m+g8m)3

For example, G5=(1+52)1/4 and g10=(1+52)1/2 yields

x3(x2+5x+40)=23(25+135)3x3(x2+5x+40)=63(65+275)3

which indeed are solvable in radicals, and so on. 

Ramanujan tabulated a lot of explicit values for Gm and gm, with odd and even m, respectively. Most odd m were m1mod4 like m=5,13,37 which have class number 2. But for m3mod4 like m=11,19,43,67,163 which have class number 1, it seems he found

Gm=21/4xm

where xm is the real root of the following cubics in Entry 160

x32x2+2x2=0x32x2=0x32x22=0x32x22x2=0x36x2+4x2=0 and in Part V of Ramanujan's Notebooks. The last leads to Ramanujan's constant,

eπ163x24163246403203743.99999999999925

but I'm unsure if he missed the equality

43(4G16163G8163)3=6403203

Saturday, June 21, 2025

Entry 190

From Entry 184, the quintic y(y5)4=j2(τ) has a solvable Galois group. For example

y(y5)4=(42)4y(y5)4=(122)4y(y5)4=124y(y5)4=3964

But these can also be expressed as

x4(x+5)=(42)ix4(x+5)=(122)ix4(x5)=12x4(x5)=396

In general, since there is a relationship between j2(α) and j4(β) where the latter is expressible by Ramanujan's Gm-function, then,

Conjecture: The special Bring-Jerrard quintics below are solvable

x5+5x=23(1G12mG12m)x55x=23(1g12m+g12m)

For example, G5=(1+52)1/4 and g10=(1+52)1/2 yields

x5+5x=(42)ix55x=12

respectively, where the latter is quite well-known as an example of a solvable quintic with small integer coefficients. And so on for all Ramanujan G and g-functions, with explicit examples in the previous entries.

Friday, June 20, 2025

Entry 189

Ramanujan's gm-function has a consistent form for fundamental discriminants d=4m with class number 2 and 4, where m=2p for primes p3mod4. For example, for p=3,11 and p=7,23,71 then

g6=61+2g22=1+2g14=1+24+4+(1+2)4g46=1+24+4+(1+2)4g142=(1+2)34+4+(1+2)34

It seems p is not needed but only 2, or the fundamental unit U2=1+2 also known as the silver ratio. For the modular lambda function λ(m) for these same m, see also Entry 134 where

1λ(14)=(n+n21)2(n22+n21)2,n=2(1+2)

Entry 188

Ramanujan g-function gm and τ=m is,

21/4gm=η(12τ)η(τ) Ramanujan tabulated Gm and gm for odd and even m, respectively. For the latter and m4, we propose a slightly different formula,

2F1(12,12;1,λ(1+m))=n=0(2n)!3n!6(1)n(21/4gm)n

with modular lambda function λ(z). Values for gm have been given in Entry 183. Using some of them, we conjecture

2F1(12,12;1,λ(1+6))=n=0(2n)!3n!6(1)n(21/4(1+2)1/6)n

2F1(12,12;1,λ(1+22))=n=0(2n)!3n!6(1)n(21/4(1+2)1/2)n

and so on.

Entry 187

For the fourth McKay-Thompson series for the Monster j4(τ)=((η(τ)η(4τ))4+42(η(4τ)η(τ))4)2=(η2(2τ)η(τ)η(4τ))24Since we have Ramanujan's Gm-function for τ=m as

21/4Gm=η2(τ)η(12τ)η(2τ)

then j4(12τ) is just the 24th power of 21/4Gm. Hence we propose 

K(km)=π2n=0(2n)!3n!61(21/4Gm)24n

Examples. The values for G5,G13,G37 have already been given in Entry 181 and involve roots of quadratics, like G5=ϕ1/4 with golden ratio ϕ. But for cubics, given the tribonacci constant T, the plastic ratio P and the supergolden ratio ψ, the real root of

T3T2T1=0P3P1=0ψ3ψ21=0

then G11,G23,G31 are

G11=21/4(T+1T)G23=21/4PG31=21/4ψ

and we conjecture

K(k5)=π2n=0(2n)!3n!61(21/4ϕ1/4)24n

K(k11)=π2n=0(2n)!3n!61(T+1T)24n

K(k23)=π2n=0(2n)!3n!61(21/2P)24n

K(k31)=π2n=0(2n)!3n!61(21/2ψ)24n

and so on.

Thursday, June 19, 2025

Entry 186

Using the j3(τ) from the previous entry, then the following quintics have a solvable Galois group

y3(y5)2=343y3(y5)2=5123y3(y5)2=7363y3(y5)2=11(1503+7811)3

as well as

y3(y5)2=(23)6y3(y5)2=(43)6y3(y5)2=(103)6

as discussed in Entry 142.

Entry 185

For the third McKay-Thompson series of the Monster, or j3(τ) 

j3(τ)=((η(τ)η(3τ))6+33(η(3τ)η(τ))6)2

I haven't yet found a general formula for the complete elliptic integral of the first kind K(km) except for the special case K(k3). Note that,

π=β(12,12)=2101(1x2)1/2dx=3.14159

π3=β(13,13)=3101(1x3)1/3dx=5.29992

where π3=24/331/4K(k3)=32πΓ3(13), the real period of the Dixon elliptic functions, can be considered as a cubic analogue of π. Let 

j3(1+31/32)=343j3(1+51/32)=5123j3(1+71/32)=7363j3(1+111/32)=11(1503+7811)3

Hence we propose

21/3K(k3)=31/4π2n=0(2n)!(3n)!n!51(343)n

21/3K(k3)=52/333/4π2n=0(2n)!(3n)!n!51(5123)n

21/3K(k3)=75/635/4π2n=0(2n)!(3n)!n!51(7363)n

21/3K(k3)113=115/633/4π8n=0(2n)!(3n)!n!51(11(1503+7811)3)n

Wednesday, June 18, 2025

Entry 184

Using the j2(τ) from the previous entries, then the following quintics have a solvable Galois group

y(y5)4=(42)4y(y5)4=(122)4y(y5)4=(842)4

as well as,

y(y5)4=(43)4y(y5)4=124y(y5)4=(1211)4y(y5)4=3964

and an example with class number 4

y(y5)4=2934(111+1373)3

though for all radical j2(τ) as also discussed in Entry 141.

Entry 183

The more famous value of j2(τ) is

j2(1258)=3964

So for even m and since K(k)=π22F1(12,12;1,k2), we propose a slightly different formula,

2F1(12,12;1,λ(1+m))=(21/4gm)3(j2(τ))1/8n=0(4n)!n!41(j2(τ))n

with modular lambda function λ(z)Ramanujan g-function gm for integer m4 and τ=12m,

21/4gm=η(12m)η(m)

For Ramanujan's Gm and gm-functions, he tabulated them for odd and even m, respectively and found,

g6=(1+2)1/6g10=(1+52)1/2g22=(1+2)1/2g58=(5+292)1/2 Therefore we conjecture

2F1(12,12;1,λ(1+6))=(21/4g6)343n=0(4n)!n!41(43)4n2F1(12,12;1,λ(1+10))=(21/4g10)312n=0(4n)!n!41124n2F1(12,12;1,λ(1+22))=(21/4g22)31211n=0(4n)!n!41(1211)4n2F1(12,12;1,λ(1+58))=(21/4g58)3396n=0(4n)!n!413964n

Entry 182

Using class number 4, in Entry 68 we calculated j2(τ) at certain points and found,

j2(1+172)=211(4+17)2(1+17)j2(1+732)=2934(111+1373)3j2(1+972)=21134(59+697)4(9+97)j2(1+1932)=21134(208+15193)4(903+65193) All the quadratic irrationals above with odd powers are odd fundamental solutions to Pell equations x2my2=16. For example, the initial solution to x2193y2=16 is (x,y)=(903,65). And Ramanujan already found

G17=3+178+5+178G73=1+738+9+738G97=5+978+13+978G193=22+21938+30+21938

These were used in Entry 162 to find formulas for K(km). But we can combine these to find new formulas using 

K(km)=π2(21/4Gm)3(j2(τ))1/8n=0(4n)!n!41(j2(τ))n

where τ=1+m2. For example, let m=73

K(k73)=π2(1+738+9+738)323/4(j2(τ))1/8n=0(4n)!n!41(j2(τ))n

where as given above

j2(τ)=j2(1+732)=2934(111+1373)3

and so on.

Entry 181

For the second McKay-Thompson series of the Monster, or j2(τ) 

j2(τ)=((η(τ)η(2τ))12+26(η(2τ)η(τ))12)2

we conjecture that the complete elliptic integral of the first kind K(km)

K(km)=π2(21/4Gm)3(j2(τ))1/8n=0(4n)!n!41(j2(τ))n

with Ramanujan G-function Gm for integer m5 and τ=1+m2

21/4Gm=η2(m)η(12m)η(2m)=ζ48η(τ)η(2τ)and 48th root of unity ζ48=e2πi/48

Examples. For class number h(4m)=2, we've already come across 

G5=(1+52)1/4G13=(3+132)1/4G37=(6+37)1/4

hence,

K(k5)=π2(1+5)3/4(42)1/2n=0(4n)!n!41((42)4)n

K(k13)=π2(3+13)3/4(122)1/2n=0(4n)!n!41((122)4)n

K(k37)=π223/4(6+37)3/4(842)1/2n=0(4n)!n!41((842)4)n

and so on.

Entry 180

Using the j-functions from the previous entries, then the following quintics have a solvable galois group z3(z2+5z+40)=9603z3(z2+5z+40)=52803z3(z2+5z+40)=6403203 and all other radical j(τ). Examples from class number 2z3(z2+5z+40)=23(25135)3z3(z2+5z+40)=303(31913)3z3(z2+5z+40)=603(283746837)3

a form related to the Brioschi quintic and discussed in Entry 140.

Tuesday, June 17, 2025

Entry 179

Continuing from Entry 178, we select some d=4m with class number h(-d) = 2. It is known for m = 5,13,17 

\begin{align}G_{5} &= \left(\frac{1+\sqrt{5}}2\right)^{1/4}\\ G_{13} &= \left(\frac{3+\sqrt{13}}2\right)^{1/4}\\ \,G_{37} &=\, \big(6+\sqrt{37}\big)^{1/4}\end{align}

and calculate the j-function at the points,

\begin{align}j\big(\tfrac{1+\sqrt{-5}}2\big) &= 2^3(25-13\sqrt{5})^3\\ j\big(\tfrac{1+\sqrt{-13}}2\big) &= 30^3(31-9\sqrt{13})^3\\ j\big(\tfrac{1+\sqrt{-37}}2\big) &= 60^3(2837-468\sqrt{37})^3\end{align}

which are all negative values just like in the previous entry. The proposed relation has a bound m\geq7, so the first value can't be used. But we conjecture 

K(k_{13}) = \frac{\pi}2  \frac{\big(3+\sqrt{13}\big)^{1/2}}{\big({-30^3}(31-9\sqrt{13})^3 \big)^{1/12}}\, \sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big(30^3(31-9\sqrt{13})^3\big)^n}}

K(k_{37}) = \frac{\pi}2  \frac{2^{3/4}\big(6+\sqrt{37}\big)^{3/4}}{\big({-60^3}(2837-468\sqrt{37} \big)^{1/12}}\, \sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big({60^3(2837-468\sqrt{37}}\big)^n}}

and so on for other j\big(\tfrac{1+\sqrt{-m}}2\big) with m\geq7.

Entry 178

We go back to the first four McKay-Thompson series of the Monster. We conjecture that the complete elliptic integral of the first kind K(k_m) can be given by the first McKay-Thomson series j_{1A}(\tau) = j(\tau) or simply the j-function as,

K(k_m) = \frac{\pi}2  \frac{(2^{1/4}G_m)^2}{\big({-j(\tau)}\big)^{1/12}}\sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big(j(\tau)\big)^n}}

with Ramanujan G-function G_m for integer m\geq7 and \tau = \frac{1+\sqrt{-m}}2

2^{1/4}G_m = \frac{\eta^2(\sqrt{-m})}{\eta(\tfrac12\sqrt{-m})\,\eta(2\sqrt{-m})} = \zeta_{48}\frac{\eta(\tau)}{\eta(2\tau)}and 48th root of unity \zeta_{48} = e^{2\pi i/48}. Let odd discriminant d=m. Examples for class number h(-d) = 1,

K(k_{7}) = \frac{\pi}2 \frac{2}{\big({15^3}\big)^{1/12}}\sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big({-15^3}\big)^n}}

while for higher Heegner numbers, x is a root of a simple cubic

K(k_{11}) = \frac{\pi}2 \left(\frac{1}{T}+1\right)^2\frac1{\big({32^3}\big)^{1/12}}\sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big({-32^3}\big)^n}}

with T the tribonacci constant, the real root of T^3-T^2-T-1=0. For the largest

K(k_{163}) = \frac{\pi}2 \frac{x^2}{\big({640320^3}\big)^{1/12}}\sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big({-640320^3}\big)^n}}

where x is the real root of x^3-6x^2+4x-2 = 0

P.S. The non-fundamental d=27 also has class number 1 hence its j-function is an integer

K(k_{27}) = \frac{\pi}2 \frac{(2+2^{4/3}+2^{5/3})^{2/3}}{\big({{-3}\cdot160^3}\big)^{1/12}}\sqrt{\sum_{n=0}^\infty \frac{(6n)!}{(3n)!\,n!^3} \frac1{\big({-3\cdot160^3}\big)^n}}

Entry 177

From Entry 176, we gave the fundamental unit U_d U_{163}=64080026 + 5019135\sqrt{163}= \left(\frac{\color{blue}{8005} + 627\sqrt{163}}{\sqrt2}\right)^2 and from e^{\pi\sqrt{163}}\approx 640320^3+744, observed that 640320=80\,(\color{blue}{8005}-1) This may be just coincidence, but not when U_{3d} for d = 7,11,19,43,67,163. This was also observed by H. H. Chan. Given the fundamental units

\begin{align}U_{21} &=\left(\tfrac{\sqrt3+\sqrt{7}}2\right)^2\\ U_{33} &=\big(2\sqrt3+\sqrt{11}\big)^2\\ U_{57} &=\big(5\sqrt3+2\sqrt{19}\big)^2\\ U_{129} &=\big(53\sqrt3+14\sqrt{43}\big)^2\\ U_{201} &=\big(293\sqrt3+62\sqrt{67}\big)^2\\ U_{489} &=\big(35573\sqrt3+4826\sqrt{163}\big)^2 \end{align}

Define the function

F_d = 3\sqrt3\big(\sqrt{U_{3d}}-1/\sqrt{U_{3d}}\big)+6

then we get the rather familiar\begin{align}F_{7} &= 15\\ F_{11} &= 6(1+\sqrt{33})\\ F_{19} &= 96\\ F_{43} &= 960\\ F_{67} &= 5280\\ F_{163} &= 640320\end{align}

which (except for d=11) are the cube roots of the j-function (negated). 

P.S. I don't know why d=11 does not obey the pattern, but it does yield the integer 42 if the positive sign of the second square root \pm 1/\sqrt{U_{3d}} is used, though the correct value should be 32.

Entry 176

Ramanujan found the exact value of the Ramanujan G-function G_{69} = \left(\frac{5+\sqrt{23}}{\sqrt2}\right)^{1/12} \left(\frac{3\sqrt3+\sqrt{23}}2\right)^{1/8} \left(\sqrt{\frac{2+3\sqrt3}4}+\sqrt{\frac{6+3\sqrt3}4}\right)^{1/2}Note the fundamental units U_n \begin{align}U_{23} &= 24+5\sqrt{23} = \left(\frac{5+\sqrt{23}}{\sqrt2}\right)^2\\ U_{69} &= \frac{25+3\sqrt{69}}2 = \left(\frac{3\sqrt3+\sqrt{23}}2\right)^2 \end{align} and how he uses the squared version. As a second example

G_{77} = \big(8+3\sqrt7\big)^{1/8}\left(\frac{\sqrt7+\sqrt{11}}2\right)^{1/8} \left(\sqrt{\frac{2+\sqrt{11}}4}+\sqrt{\frac{6+\sqrt{11}}4}\right)^{1/2}\quad

and fundamental units \begin{align}U_7 &= 8+3\sqrt7 =  \left(\frac{3+\sqrt{7}}{\sqrt2}\right)^2\\ U_{77} &= \frac{9+\sqrt{77}}2 = \left(\frac{\sqrt7+\sqrt{11}}2\right)^2 \end{align}

Ramanujan mostly uses the squared version of the U_n to get "simpler" expressions with smaller integers. For prime p \equiv 3\,\text{mod}\,4, one can always do since 

x^2-py^2=-2\\ x^2-py^2=+2 are solvable by p \equiv 3\,\text{mod}\,8\, and p \equiv 7\,\text{mod}\,8, respectively. Checking  U_{67} and U_{163}, yields the reductions U_{67}= 48842 + 5967\sqrt{67} = \left(\frac{\color{blue}{221} + 27\sqrt{67}}{\sqrt2}\right)^2\\ U_{163}=64080026 + 5019135\sqrt{163}= \left(\frac{\color{blue}{8005} + 627\sqrt{163}}{\sqrt2}\right)^2And from e^{\pi\sqrt{67}}\approx 5280^3+744 and e^{\pi\sqrt{163}}\approx 640320^3+744, we find the relations 5280=24\,(\color{blue}{221}-1)\\ 640320=80\,(\color{blue}{8005}-1) though it may be just coincidence.

Monday, June 16, 2025

Entry 175

For discriminant d=4m with class number 8 and semiprime m

If m =5p, then distinguish between p \equiv 1\,\text{mod}\, 8 and p \equiv 5\,\text{mod}\, 8

If m =7p, then distinguish between p \equiv 3\,\text{mod}\, 8 and p \equiv 7\,\text{mod}\, 8

The semiprime m =5p was in the previous entry. For m =7p, there are only four and Ramanujan found the radicals below. 

For the 1st case, p = 11, 43, thus m = 7p = 77,\, 301  

\begin{align}G_{77} &= \big(8+3\sqrt7\big)^{1/8}\left(\frac{\sqrt7+\sqrt{11}}2\right)^{1/8} \left(\sqrt{\frac{2+\sqrt{11}}4}+\sqrt{\frac{6+\sqrt{11}}4}\right)^{1/2}\\ G_{301} &= \big(8+3\sqrt7\big)^{1/8}\left(\frac{57\sqrt7+23\sqrt{43}}2\right)^{1/8} \left(\sqrt{\frac{42+7\sqrt{43}}4}+\sqrt{\frac{46+7\sqrt{43}}4}\right)^{1/2}\end{align}

For the 2nd case, p = 31, 79, thus m = 7p = 217,\, 553 

\begin{align}G_{217} &= \left(\sqrt{x_1-\tfrac12}+\sqrt{x_1+\tfrac12}\right)^{1/2} \left(\sqrt{y_1-\tfrac12}+\sqrt{y_1+\tfrac12}\right)^{1/2}\\ G_{553} &= \left(\sqrt{x_2-\tfrac12}+\sqrt{x_2+\tfrac12}\right)^{1/2} \left(\sqrt{y_2-\tfrac12}+\sqrt{y_2+\tfrac12}\right)^{1/2} \quad\end{align} where x_1=\frac{10+4\sqrt{7}}2,\quad y_1=\frac{14+5\sqrt{7}}4 x_2=\frac{142+16\sqrt{79}}2,\quad y_2=\frac{98+11\sqrt{79}}4

But it seems not noticed that a fundamental unit is imbedded in these radicals as

x_1+2y_1 = \frac32(8+3\sqrt{7}) = \frac32\left(\frac{3+\sqrt7}{\sqrt2}\right)^2 =\frac32\,U_7

x_2+2y_2 = \frac32(80+9\sqrt{79}) = \frac32\left(\frac{9+\sqrt{79}}{\sqrt2}\right)^2 = \frac32\,U_{79}

Entry 174

Continuing from the previous entry, for d=4m with class number 8, the semiprime m =5p with p \equiv 5\,\text{mod}\, 8 is also well-behaved. And it involves the golden ratio. There are only four, namely p = 13, 29, 53, 101, thus m = 5p = 65, 145, 265, 505. Ramanujan found the radicals below and the G-function have a common form

G_{5p} = \phi^{k}\,U_{p}^{1/4}\,x_{p}^{1/2}

with powers of the golden ratio \phi, fundamental unit U_n, and x_{p}^2 a root of a unit quartic

\begin{align}\frac{G_{65}}{\phi} &= \left(\frac{3+\sqrt{13}}2\right)^{1/4} \left(\sqrt{\frac{1+\sqrt{65}}8}+\sqrt{\frac{9+\sqrt{65}}8}\right)^{1/2}\\ \frac{G_{145}}{\phi^3} &= \left(\frac{5+\sqrt{29}}2\right)^{1/4} \left(\sqrt{\frac{9+\sqrt{145}}8}+\sqrt{\frac{17+\sqrt{145}}8}\right)^{1/2}\\ \frac{G_{265}}{\phi^3} &= \left(\frac{7+\sqrt{53}}2\right)^{1/4} \left(\sqrt{\frac{81+5\sqrt{265}}8}+\sqrt{\frac{89+5\sqrt{265}}8}\right)^{1/2}\\ \frac{G_{505}}{\phi^7} &= \big(10+\sqrt{101}\big)^{1/4} \left(\sqrt{\frac{105+5\sqrt{505}}8}+\sqrt{\frac{113+5\sqrt{505}}8}\right)^{1/2}\end{align}

The case p \equiv 1\,\text{mod}\, 8 or p = 41, 89, thus m = 5p = 205, 445 behaves slightly differently though

\begin{align}\frac{G_{205}}{\phi} &= \left(\frac{43+3\sqrt{205}}2\right)^{1/8} \left(\sqrt{\frac{-1+\sqrt{41}}8}+\sqrt{\frac{7+\sqrt{41}}8}\right)\\  \frac{G_{445}}{\phi^{3/2}} &= \,\left(\frac{21+\sqrt{445}}2\right)^{1/4}\, \left(\sqrt{\frac{5+\sqrt{89}}8}+\sqrt{\frac{13+\sqrt{89}}8}\right)\end{align}

How Ramanujan found these is a mystery.

Sunday, June 15, 2025

Entry 173

There are many in the set d=4m with class number 8. When m is a prime or a semiprime (a product of two primes) like m =3p, then it may be well-behaved. For this set, there are only three, namely p = 23, 47, 71, thus m = 3p = 69, 141, 213. Ramanujan found the radicals below and the G-function have a common form

G_{3p} = U_{p}^{1/24}\,U_{3p}^{1/16}\,x_{p}^{1/2}

with fundamental unit U_n and where x_{p}^2 is a root of a unit quartic

\begin{align}G_{69} &= \left(\frac{5+\sqrt{23}}{\sqrt2}\right)^{1/12} \left(\frac{3\sqrt3+\sqrt{23}}2\right)^{1/8} \left(\sqrt{\frac{2+3\sqrt3}4}+\sqrt{\frac{6+3\sqrt3}4}\right)^{1/2}\\ G_{141} &= \left(\frac{7+\sqrt{47}}{\sqrt2}\right)^{1/12}\; \big(4\sqrt3+\sqrt{47}\big)^{1/8}\; \left(\sqrt{\frac{14+9\sqrt3}4}+\sqrt{\frac{18+9\sqrt3}4}\right)^{1/2}\\ G_{213} &= \left(\frac{59+7\sqrt{71}}{\sqrt2}\right)^{1/12} \left(\frac{5\sqrt3+\sqrt{71}}2\right)^{1/8} \left(\sqrt{\frac{19+12\sqrt3}2}+\sqrt{\frac{21+12\sqrt3}2}\right)^{1/2} \end{align} How Ramanujan found these is unknown as it is uncertain if he was aware of class field theory. Note also that without the factor 3, then d=23,47,71 are the smallest d with class number h(-d) = 3,5,7, respectively, while h(-3d) = 8.

P.S. Checking h(-3d) = 16, one finds the only primes are d=167,191,239,383,311 which are the smallest d with class number h(-d) = 11,13,15,17,19, respectively. Makes me wonder if their G_{3d} would be analogous.

Entry 172

There are many fundamental d=4m with class number 8, though only seven are prime namely p = 41, 113, 137, 313, 337, 457, 577. Their Ramanujan G-functions are

\begin{align}G_{41} &= \left(\frac{x+\sqrt{x^2-4}}2\right)^{1/2} =\sqrt{\frac{x-2}4}+\sqrt{\frac{x+2}4} \\ G_{113} &=\left(\frac{y+\sqrt{y^2-4}}2\right)^{1/2} =\sqrt{\frac{y-2}4}+\sqrt{\frac{y+2}4} \end{align} where x = \left(\frac{5+\sqrt{41}}4\right) \left(1+\sqrt{\frac{-5+\sqrt{41}}8}\right)\\ y = \left(\frac{9+\sqrt{113}}4\right) \left(1+\sqrt{\frac{-7+\sqrt{113}}2}\right) and similarly for the other p, though the quartic roots get more complicated.

Saturday, June 14, 2025

Entry 171

Continuing from Entry 170, there is another way to express the Ramanujan G_n-function where d=4n for prime n has class number 6 by using fundamental units U_n. Borrowing a trick from Ramanujan, he found

G_{169}=\frac13\Big(2+\sqrt{13}+\sqrt[3]{U_{13}(v+3\sqrt{3})\sqrt{13}}+\sqrt[3]{U_{13}(v-3\sqrt{3})\sqrt{13}}\Big)

where U_{13} = \frac{3+\sqrt{13}}2, \quad v = \frac{11+\sqrt{13}}2

Using a similar form, we propose that

\begin{align}G_{29} &=\frac1{3^{1/4}}\Big(\tfrac{9+\sqrt{29}}2+\sqrt[3]{U_{29}(x+24\sqrt{3})}+\sqrt[3]{U_{29}(x-24\sqrt{3})}\Big)^{1/4}\\ G_{53} &=\frac1{3^{1/4}}\Big(\tfrac{23+3\sqrt{53}}2+\sqrt[3]{U_{53}(y+120\sqrt{3})}+\sqrt[3]{U_{53}(y-120\sqrt{3})}\Big)^{1/4}\\ G_{61} &=\frac1{3^{1/4}}\Big(15+2\sqrt{61}+\sqrt[3]{U_{61}(z+72\sqrt{3})}+\sqrt[3]{U_{61}(z-72\sqrt{3})}\Big)^{1/4}\end{align} whereU_{29} = \frac{5+\sqrt{29}}2, \quad x = \frac{185+19\sqrt{29}}2 \quad U_{53} = \frac{7+\sqrt{53}}2, \quad y = \frac{1721+217\sqrt{53}}2 U_{61} = \frac{39+5\sqrt{61}}2, \quad z = \frac{601+93\sqrt{61}}2\;

and similarly for all seven prime p = 29, 53, 61, 109, 157, 277, 397. Note they have form p \equiv 5\,\text{mod}\,8. And all their fundamental units have form U_p=\frac{a+b\sqrt{p}}2, hence have odd solutions to the Pell equation x^2-py^2=-4.

Entry 170

There are only seven fundamental d=4p with class number 6, namely p = 29, 53, 61, 109, 157, 277, 397. Hence their Ramanujan G-functions are

\begin{align}G_{29} &= \left(\frac{y_1^2+\sqrt{y_1^4+4}}2\right)^{1/4} \\ G_{53} &= \left(\frac{y_2^2+\sqrt{y_2^4+4}}2\right)^{1/4} \\ G_{61} &=  \left(\frac{y_3^2+\sqrt{y_3^4+36}}6\right)^{1/4} \end{align} wherey^3 - y^2 - 4y - 4 = 0\\ y^3 - 7y^2 + 13y - 11 = 0\\ y^3 - 6y^2 - 27y - 54 = 0 and similarly for the other p

Entry 169

Recall Ramanujan's G-function2^{1/4}G_n=\frac{\eta^2(\tau)}{\eta(\tfrac{\tau}2)\,\eta(\tau)} where \tau=\sqrt{-n}. There are only three fundamental d=4p with class number 2 for prime p, namely p = 5,13,37. Hence \begin{align}G_5 &= \left(\frac{1+\sqrt5}2\right)^{1/4}\\ G_{13} &= \left(\frac{3+\sqrt{13}}2\right)^{1/4}\\ G_{37} &=\, \big(6+\sqrt{37}\big)^{1/4}\end{align}Going higher, there are only four fundamental d=4p with class number 4 for prime p, namely p = 17,73,97,193.

\begin{align}G_{17} &= \sqrt{\frac{-3+\sqrt{17}}8} +\sqrt{\frac{5+\sqrt{17}}8} \\ G_{73} &= \sqrt{\frac{1+\sqrt{73}}8} +\sqrt{\frac{9+\sqrt{73}}8} \\ G_{97} &= \sqrt{\frac{5+\sqrt{97}}8} +\sqrt{\frac{13+\sqrt{97}}8} \\ G_{193} &=  \sqrt{\frac{22+2\sqrt{193}}8} +\sqrt{\frac{30+2\sqrt{193}}8} \end{align} all of which were already known to Ramanujan. But as was shown in Entry 161 and Entry 162, it turns out these also appear in the closed-form of the complete elliptic integral of the first kind K(k_n). The next entry will be for class number 6 where one had to extract 4th roots again.

Entry 168

For class number 5, there are only four d of the kind d \equiv 7\,\text{mod}\,8, namely d = 47, 79, 103, 127. We illustrate only the first two and propose, \begin{align}K(k_{47}) &=\frac{\sqrt{2\pi}}{2\sqrt{47}}\,x^{2/3} \left(\prod_{m=1}^{47}\Big[\Gamma\big(\tfrac{m}{47}\big)\Big]^{\big(\tfrac{-47}{m}\big)}\right)^{\color{red}{1/10}}\\ K(k_{79}) &=\frac{\sqrt{2\pi}}{2\sqrt{79}}\,y^{2/3} \left(\prod_{m=1}^{79}\Big[\Gamma\big(\tfrac{m}{79}\big)\Big]^{\big(\tfrac{-79}{m}\big)}\right)^{\color{red}{1/10}}\end{align} where (x,y) are the real roots of the quintics solvable in radicals x^5 - 2x^4 - 10x^3 - 13x^2 - 6x - 1=0\\ y^5 - 11y^4 + 17y^3 - 2y^2 - 5y - 1=0 And similarly for d= 103,127. But for the next discriminant or d=131 which is of kind d \equiv 3\,\text{mod}\,8, one now has to deal with an algebraic number of degree 3\times5 = 15. And it seems difficult to find the eta quotients responsible for (x,y).

Entry 167

For odd class number h(-d), the kind that is d \equiv 7\,\text{mod}\,8 seems more well-behaved than d \equiv 3\,\text{mod}\,8. For class number 3, there are only two of the first kind: d = 23,31. Hence, \begin{align}K(k_{23}) &=\frac{\sqrt{2\pi}}{2\sqrt{23}}\,x^{4/3} \left(\prod_{m=1}^{23}\Big[\Gamma\big(\tfrac{m}{23}\big)\Big]^{\big(\tfrac{-23}{m}\big)}\right)^{\color{red}{1/6}}\\ K(k_{31}) &=\frac{\sqrt{2\pi}}{2\sqrt{31}}\,y^{4/3} \left(\prod_{m=1}^{31}\Big[\Gamma\big(\tfrac{m}{31}\big)\Big]^{\big(\tfrac{-31}{m}\big)}\right)^{\color{red}{1/6}}\end{align} where (x,y) are the real roots of the cubics x^3-x-1=0\\ y^3-y^2-1=0 or the plastic ratio and supergolden ratio, respectively. But for d=59 which is of the second kind, then the radical involved will be an algebraic number of degree 3\times3 =9.

Entry 166

The case d=8 is special since it is even but has odd class number h(-d)=1. Given the Kronecker symbol \big(\tfrac{-d}{m}\big), we propose a symmetrical closed-form 

\begin{align}K(k_8) &=\frac{\sqrt{2\pi}}{16}\frac1{\sqrt{U_2}}\left(\sqrt{\frac{U_2-1}2}+\sqrt{\frac{U_2+1}2}\right)^2 \left(\prod_{m=1}^{8}\Big[\Gamma\big(\tfrac{m}{8}\big)\Big]^{\big(\tfrac{-8}{m}\big)}\right)^{1/2}\\ &=\frac{\sqrt{2\pi}}{16}\frac1{\sqrt{U_2}}\left(\sqrt{\frac{U_2-1}2}+\sqrt{\frac{U_2+1}2}\right)^2 \left(\frac{\Gamma\big(\frac18\big)\,\Gamma\big(\frac38\big)}{\Gamma\big(\frac58\big)\,\Gamma\big(\frac78\big)}\right)^{1/2}\end{align} with fundamental unit U_2=1+\sqrt2 and form reminiscent of the odd d with class number 1.

Friday, June 13, 2025

Entry 165

The previous entries dealt with even class numbers. For odd class number h(-d)=1, there are the nine Heegner numbers d=1,2,3,7,11,19,43,67,163. Given the Kronecker symbol \big(\tfrac{-d}{m}\big), we propose 

Conjecture. Let d>3 with class number h(-d)=1. Then x below is an algebraic number \frac1{x_d^2}  = \frac1{K(k_d)}\frac{\sqrt{2\pi}}{\color{blue}4\sqrt{d}} \left(\prod_{m=1}^{d}\Big[\Gamma\big(\tfrac{m}{d}\big)\Big]^{\big(\tfrac{-d}{m}\big)}\right)^{\color{red}{1/2}}specificallyx_d=2^{1/4}G_n=\frac{\eta^2(\tau)}{\eta(\tfrac{\tau}2)\,\eta(\tau)} with Ramanujan's G-function. This function x_d has been discussed in Entry 159. For d=7, then x_7=\sqrt2, but for the five d\geq11, then x_d are the real roots of the following five simple cubics, 

\begin{align}& x^3-2x^2+2x-2 = 0\\ & x^3-2x-2 = 0 \\ & x^3-2x^2-2 = 0 \\ & x^3-2x^2-2x-2 = 0 \\ & x^3-6x^2+4x-2=0\end{align} also discussed in Entry 160

Entry 164

To summarize, given fundamental discriminant d, class number h(-d)=n, complete elliptic integral of the first kind K(k_p), and Kronecker symbol \big(\tfrac{-d}{m}\big)

Conjecture 1. Let even d=4p for prime p\equiv 1\,\text{mod}\,4 with even class number h(-d)=n and x = \frac1{K(k_{\color{blue}{d/4}})}\frac{\sqrt{2\pi}}{2\sqrt{d}} \left(\prod_{m=1}^{d}\Big[\Gamma\big(\tfrac{m}{d}\big)\Big]^{\big(\tfrac{-d}{m}\big)}\right)^{\color{red}{1/(2n)}} Conjecture 2. Let odd \,d=p\, for prime p\,\equiv\, 3\,\text{mod}\,4\, with odd class number h(-d)=n and y = \frac1{K(k_{d})}\frac{\sqrt{2\pi}}{2\sqrt{d}} \left(\prod_{m=1}^{d}\Big[\Gamma\big(\tfrac{m}{d}\big)\Big]^{\big(\tfrac{-d}{m}\big)}\right)^{\color{red}{1/(2n)}} then (x,y) are algebraic numbers as seen in entries 160-163 and 165-168. They seem to have a closed-form in term of eta quotients but I haven't found it yet.

Entry 163

There are only seven fundamental d = 4p with class number 6, namely p=29, 53, 61, 109, 157, 277, 397.  To prevent clutter, only the first three will be stated. Given the Kronecker symbol \big(\frac{d}{m}\big), we propose

\begin{align}K(k_{29}) &= \frac{\sqrt{2\pi}}{2\sqrt{116}} \frac1{\;(x_1)^{1/3}} \left(\frac{y_1^2+\sqrt{y_1^4+4}}2\right)^{3/4} \left(\prod_{m=1}^{116}\Big[\Gamma\big(\tfrac{m}{116}\big)\Big]^{\big(\tfrac{-116}{m}\big)}\right)^{\color{red}{1/12}}\\ K(k_{53}) &= \frac{\sqrt{2\pi}}{2\sqrt{212}} \frac1{\;(x_2)^{1/3}} \left(\frac{y_2^2+\sqrt{y_2^4+4}}2\right)^{3/4} \left(\prod_{m=1}^{212}\Big[\Gamma\big(\tfrac{m}{212}\big)\Big]^{\big(\tfrac{-212}{m}\big)}\right)^{\color{red}{1/12}}\\ K(k_{61}) &= \frac{\sqrt{2\pi}}{2\sqrt{244}} \frac1{\;(x_3)^{1/3}} \left(\frac{y_3^2+\sqrt{y_3^4+36}}6\right)^{3/4} \left(\prod_{m=1}^{244}\Big[\Gamma\big(\tfrac{m}{244}\big)\Big]^{\big(\tfrac{-244}{m}\big)}\right)^{\color{red}{1/12}}\end{align} where the x_n are the real roots of the following cubics x^3 - 5x^2 - 3x - 1 = 0\\ x^3 - 15x^2 - x - 1= 0\\ x^3 - 27x^2 - 5x - 1= 0 while the y_n are also the real roots of cubics y^3 - y^2 - 4y - 4 = 0\\ y^3 - 7y^2 + 13y - 11 = 0\\ y^3 - 6y^2 - 27y - 54 = 0 and similarly for the other p.

Entry 162

There are only four fundamental d = 4p with class number 4, namely p=17,73,97,193.  Given the Kronecker symbol \big(\frac{d}{m}\big), we propose

\begin{align}K(k_{17}) &= \frac{\sqrt{2\pi}}{2\sqrt{68}} \frac1{(U_{17})^{1/8}} \left(\sqrt{\frac{-3+\sqrt{17}}8} +\sqrt{\frac{5+\sqrt{17}}8}\right)^{3} \left(\prod_{m=1}^{68}\Big[\Gamma\big(\tfrac{m}{68}\big)\Big]^{\big(\tfrac{-68}{m}\big)}\right)^{\color{red}{1/8}}\\ K(k_{73}) &= \frac{\sqrt{2\pi}}{2\sqrt{292}}  \frac1{(U_{73})^{1/8}} \left(\sqrt{\frac{1+\sqrt{73}}8} +\sqrt{\frac{9+\sqrt{73}}8}\right)^{3} \left(\prod_{m=1}^{292}\Big[\Gamma\big(\tfrac{m}{292}\big)\Big]^{\big(\tfrac{-292}{m}\big)}\right)^{\color{red}{1/8}}\\ K(k_{97}) &= \frac{\sqrt{2\pi}}{2\sqrt{388}} \frac1{(U_{97})^{1/8}} \left(\sqrt{\frac{5+\sqrt{97}}8} +\sqrt{\frac{13+\sqrt{97}}8}\right)^{3}  \left(\prod_{m=1}^{388}\Big[\Gamma\big(\tfrac{m}{388}\big)\Big]^{\big(\tfrac{-388}{m}\big)}\right)^{\color{red}{1/8}}\\ K(k_{193}) &= \frac{\sqrt{2\pi}}{2\sqrt{772}} \frac1{(U_{193})^{1/8}} \left(\sqrt{\frac{22+2\sqrt{193}}8} +\sqrt{\frac{30+2\sqrt{193}}8}\right)^{3} \left(\prod_{m=1}^{772}\Big[\Gamma\big(\tfrac{m}{772}\big)\Big]^{\big(\tfrac{-772}{m}\big)}\right)^{\color{red}{1/8}}\end{align} where the U_n are fundamental units U_{17} = 4+\sqrt{17} U_{73} = 1068+125\sqrt{73} U_{97} = 5604 + 569\sqrt{97} U_{193} = {1764132} + 126985\sqrt{193} Going to class number 6, the red exponent will now be 1/12.

Entry 161

Entry 160 dealt with discriminants d with class number 1. Going higher, there are only three fundamental d = 4p with class number 2, namely p=5,13,17.  Given the Kronecker symbol \big(\frac{d}{m}\big), we propose

\begin{align}K(k_5) &= \frac{\sqrt{2\pi}}{2\sqrt{20}}\left(\frac{1+\sqrt5}2\right)^{3/4}\left(\prod_{m=1}^{20}\Big[\Gamma\big(\tfrac{m}{20}\big)\Big]^{\big(\tfrac{-20}{m}\big)}\right)^{\color{red}{1/4}}\\ K(k_{13}) &= \frac{\sqrt{2\pi}}{2\sqrt{52}}\left(\frac{3+\sqrt{13}}2\right)^{3/4}\left(\prod_{m=1}^{52}\Big[\Gamma\big(\tfrac{m}{52}\big)\Big]^{\big(\tfrac{-52}{m}\big)}\right)^{\color{red}{1/4}}\\ K(k_{37}) &= \frac{\sqrt{2\pi}}{2\sqrt{148}}\left(6+\sqrt{37}\right)^{3/4}\left(\prod_{m=1}^{148}\Big[\Gamma\big(\tfrac{m}{148}\big)\Big]^{\big(\tfrac{-148}{m}\big)}\right)^{\color{red}{1/4}}\end{align}Going to class number 4, the red exponent will now be 1/8.

Wednesday, June 11, 2025

Entry 160

We continue with closed-forms for the Dedekind eta function \eta^2(\sqrt{-d}) for d=11,19,43,67,163. As discussed in Entry 159, the closed-form for the complete elliptic integral of the first kind K(k_d) then necessarily follows. 

\eta^2(\sqrt{-11}) = \frac1{x_{11}^2}\frac{\Gamma\big(\tfrac1{11}\big)\,\Gamma\big(\tfrac3{11}\big)\,\Gamma\big(\tfrac4{11}\big)\,\Gamma\big(\tfrac5{11}\big)\,\Gamma\big(\tfrac9{11}\big)}{11^{1/4}\,(2\pi)^3} \eta^2(\sqrt{-19}) = \frac1{x_{19}^2}\frac{\Gamma\big(\tfrac1{19}\big)\,\Gamma\big(\tfrac4{19}\big)\,\Gamma\big(\tfrac5{19}\big)\,\Gamma\big(\tfrac6{19}\big)\dots\Gamma\big(\tfrac{17}{19}\big)}{19^{1/4}\,(2\pi)^5}

\eta^2(\sqrt{-43}) = \frac1{x_{43}^2}\frac{\Gamma\big(\tfrac1{43}\big)\,\Gamma\big(\tfrac4{43}\big)\,\Gamma\big(\tfrac6{43}\big)\,\Gamma\big(\tfrac9{43}\big)\dots\Gamma\big(\tfrac{41}{43}\big)}{43^{1/4}\,(2\pi)^{11}}

\eta^2(\sqrt{-67}) = \frac1{x_{67}^2}\frac{\Gamma\big(\tfrac1{67}\big)\,\Gamma\big(\tfrac4{67}\big)\,\Gamma\big(\tfrac6{67}\big)\,\Gamma\big(\tfrac9{67}\big)\dots\Gamma\big(\tfrac{65}{67}\big)}{67^{1/4}\,(2\pi)^{17}}

\eta^2(\sqrt{-163}) = \frac1{x_{163}^2}\frac{\Gamma\big(\tfrac1{163}\big)\,\Gamma\big(\tfrac4{163}\big)\,\Gamma\big(\tfrac6{163}\big)\,\Gamma\big(\tfrac9{163}\big)\dots\Gamma\big(\tfrac{161}{163}\big)}{163^{1/4}\,(2\pi)^{41}}

where the x_d are the real roots of the following simple cubics, respectively

\begin{align}& x^3-2x^2+2x-2 = 0\\ & x^3-2x-2 = 0 \\ & x^3-2x^2-2 = 0 \\ & x^3-2x^2-2x-2 = 0 \\ & x^3-6x^2+4x-2=0\end{align}

The numerators, for example, of \Gamma\big(\frac{n}{19}\big) can be found using the Kronecker symbol and this Wolfram command which yields the \frac{19-1}2 = 9 numerators as n = 1, 4, 5, 6, 7, 9, 11, 16, 17.

Entry 159

Given the McKay-Thompson series of Class 4A for the Monster (A097340)

j_{4A}(\tau)=\left(\frac{\eta^2(2\tau)}{\eta(\tau)\,\eta(4\tau)}\right)^{24} = \frac1q+24 + 276q + 2048q^2 +\dots We take the 6th root, scale \tau \to \frac{\tau}2, and use the version, (x_d)^4=\left(\frac{\eta^2(\tau)}{\eta(\tfrac{\tau}2)\,\eta(2\tau)}\right)^4=\frac{_2F_1\big(\tfrac12,\tfrac12,1,\lambda(\tau)\big)}{\eta^2(\tau)}=\frac{\frac2{\pi}\times K(k_d)}{\eta^2(\tau)} where K(k_d) is a complete elliptic integral of the first kind. Compared also to Ramanujan's G-function, 2^{1/4}G_n = \frac{\eta^2(\tau)}{\eta\big(\tfrac{\tau}{2}\big)\eta(2\tau)} = q^{-\frac{1}{24}}\prod_{n>0}(1+q^{2n-1})\qquad\qquad where Ramanujan used odd n for G_n and calculated a lot of n. Mathworld also has a partial list of closed-forms for K(k_d). Knowing x_d or G_n immediately leads to a closed-form for \eta^2(\tau) as well. Examples, 

\begin{align}\frac{2}{\pi}\times K(k_7) &= x_7^2\,\frac{\Gamma\big(\tfrac17\big)\,\Gamma\big(\tfrac27\big)\,\Gamma\big(\tfrac47\big)}{7^{1/4}\,(2\pi)^2}\\ \eta^2(\sqrt{-7}) &= \frac1{x_7^2}\frac{\Gamma\big(\tfrac17\big)\,\Gamma(\tfrac27\big)\,\Gamma\big(\tfrac47\big)}{7^{1/4}\,(2\pi)^2}\end{align}

where x_7 =\sqrt2. And

\begin{align}\frac{2}{\pi}\times K(k_{11}) &= x_{11}^2\,\frac{\Gamma\big(\tfrac1{11}\big)\,\Gamma\big(\tfrac3{11}\big)\,\Gamma\big(\tfrac4{11}\big)\,\Gamma\big(\tfrac5{11}\big)\,\Gamma\big(\tfrac9{11}\big)}{11^{1/4}\,(2\pi)^3}\\ \eta^2(\sqrt{-11}) &= \frac1{x_{11}^2}\frac{\Gamma\big(\tfrac1{11}\big)\,\Gamma\big(\tfrac3{11}\big)\,\Gamma\big(\tfrac4{11}\big)\,\Gamma\big(\tfrac5{11}\big)\,\Gamma\big(\tfrac9{11}\big)}{11^{1/4}\,(2\pi)^3}\end{align}

where x_{11} =\dfrac1T+1 and T is the tribonacci constant, the real root of x^3-x^2-x-1=0. For d=11,19,43,67,163, then x_d is just the real root of a cubic.

Tuesday, June 10, 2025

Entry 158

In the previous entry, given the Jacobi theta functions \vartheta_n(0,q) with nome q = e^{\pi i\tau}, modular lambda function \lambda(\tau), and complete elliptic integral of the first kind K(k) = \tfrac{\pi}2\, {_2F_1}\big(\tfrac12,\tfrac12,1,k^2) we proposed three identities, one as,

\left(\frac{\vartheta_2(0,q)}{\sqrt{_2F_1\big(\tfrac12,\tfrac12,1,\lambda\big)}}\right)^4 \overset{\color{red}?}=\lambda where \lambda = \lambda(\tau). Using the known definitions of \vartheta_n(0,q) and \lambda(\tau), the proposed identity implies 

\frac{_2F_1\big(\tfrac12,\tfrac12,1,\lambda\big)}{\eta^2(\tau)}=\left(\frac{\eta^2(\tau)}{\eta(\tfrac{\tau}2)\,\eta(2\tau)}\right)^4

For appropriate complex quadratics such as \tau=\sqrt{-n}, then the RHS is a radical. But if the numerator of the LHS has a closed-form (implied in this list), then this also gives a closed-form for the denominator \eta^2(\tau) such as

\begin{align}\eta^2(\sqrt{-1}) &=\frac{\Gamma^2(\tfrac14)}{(2\pi)^{3/2}}\frac1{2^{1/2}}\\ \eta^2(\sqrt{-2}) &=\frac{\Gamma(\tfrac18)\Gamma(\tfrac38)}{(2\pi)^{3/2}}\frac1{2^{5/4}}\\ \eta^2(\sqrt{-3}) &=\frac{\Gamma^3(\tfrac13)}{(2\pi)^{2}}\frac{3^{1/4}}{2^{2/3}}\end{align}

and so on. Since an eta quotient is involved, then \eta(\sqrt{-d}) for d with class number 1 will behave quite orderly and will be discussed in the next entry.

Entry 157

Given the Jacobi theta functions \vartheta_n(0,q) which traditionally uses the nome q = e^{\pi i\tau}. Define the modular lambda function \lambda(\tau),

\lambda(\tau) = \frac{16}{\left(\tfrac{\eta(\tau/2)}{\eta(2\tau)}\right)^8+16} = \left(\frac{\sqrt2\,\eta(\tau/2)\eta^2(2\tau)}{\eta^3(\tau)}\right)^8 = \left(\frac{\vartheta_2(0,q)}{\vartheta_3(0,q)}\right)^4

Then we propose the three identities below and for appropriate \tau such as \tau = \sqrt{-d} and \lambda = \lambda(\tau) that the ratios below are radicals,

\begin{align}\left(\frac{\vartheta_2(0,q)}{\sqrt{_2F_1\big(\tfrac12,\tfrac12,1,\lambda\big)}}\right)^4 &\overset{\color{red}?}=\lambda\\ \left(\frac{\vartheta_4(0,q)}{\sqrt{_2F_1\big(\tfrac12,\tfrac12,1,\lambda\big)}}\right)^4 &\overset{\color{red}?}=1-\alpha\\ \left(\frac{\vartheta_3(0,q)}{\sqrt{_2F_1\big(\tfrac12,\tfrac12,1,\lambda\big)}}\right)^4 &\overset{\color{red}?}=1\end{align}

Adding the first two implies the third. Hence, after removing the common denominator

\big(\vartheta_2(0,q)\big)^4+\big(\vartheta_4(0,q)\big)^4 = \big(\vartheta_3(0,q)\big)^4

which is known to be true. As eta quotients in the same order above, 

\left(\frac{2\eta^2(2\tau)}{\eta(\tau)}\right)^4+\left(\frac{\eta^2\big(\tfrac{\tau}2\big)}{\eta(\tau)}\right)^4 = \left(\frac{\eta^5(\tau)}{\eta^2\big(\tfrac{\tau}2\big)\,\eta^2(2\tau)}\right)^4

Also, the equalities \vartheta_3(0,q) = \sum_{m=-\infty}^\infty q^{m^2} = \frac{\eta^5(\tau)}{\eta^2\big(\tfrac{\tau}2\big)\,\eta^2(2\tau)}which has a cubic version given in Entry 156.

Entry 156

Given the square of the nome, so q = e^{2\pi i\tau} and the Borwein cubic theta functions a(q),b(q),c(q). Define,

\beta = \left(\frac{3}{\left(\tfrac{\eta(\tau/3)}{\eta(3\tau)}\right)^3+3}\right)^3=\left(\frac{c(q)}{a(q)}\right)^3

Then we conjecture,

\begin{align}\left(\frac{c(q)}{_2F_1\big(\tfrac13,\tfrac23,1,\beta\big)}\right)^3 &\overset{\color{red}?}=\beta\\ \left(\frac{b(q)}{_2F_1\big(\tfrac13,\tfrac23,1,\beta\big)}\right)^3 &\overset{\color{red}?}=1-\beta\\ \left(\frac{a(q)}{_2F_1\big(\tfrac13,\tfrac23,1,\beta\big)}\right)^3 &\overset{\color{red}?}=1\end{align}

Adding the first two implies the third,

\big(c(q)\big)^3+\big(b(q)\big)^3=\big(a(q)\big)^3

which is a known relationship of the Borwein cubic theta functions. As eta quotients,

\left(\frac{3\eta^3(3\tau)}{\eta(\tau)}\right)^3+\left(\frac{\eta^3(\tau)}{\eta(3\tau)}\right)^3 =\left(\frac{\eta^3(\tau)+9\eta^3(9\tau)}{\eta(3\tau)}\right)^3

Like in the previous entry, the RHS is also a sum,

a(q) = \sum_{m,n\,=-\infty}^\infty q^{m^2+mn+n^2} = \frac{\eta^3(\tau)+9\eta^3(9\tau)}{\eta(3\tau)}

Entry 155

It turns out we can use the previous entries to parameterize the equation x^n+y^n = z^n for n=2,3,4. Given the square of the nome q = e^{2\pi i\tau} and assume the functions A(q), B(q), C(q). Define

\gamma = \left(\frac{8}{\left(\tfrac{\eta(\tau/2)}{\eta(2\tau)}\right)^8+8}\right)^2 = \left(\frac{C(q)}{A(q)}\right)^2

Then we conjecture,

\begin{align}\left(\frac{C(q)}{_2F_1\big(\tfrac14,\tfrac34,1,\gamma\big)^2}\right)^2 &\overset{\color{red}?}=\gamma\\ \left(\frac{B(q)}{_2F_1\big(\tfrac14,\tfrac34,1,\gamma\big)^2}\right)^2 &\overset{\color{red}?}=1-\gamma\\ \left(\frac{A(q)}{_2F_1\big(\tfrac14,\tfrac34,1,\gamma\big)^2}\right)^2 &\overset{\color{red}?}=1\end{align}

where C(q), B(q), A(q) are defined by the relation and eta quotients below,

\big(C(q)\big)^2+\big(B(q)\big)^2=\big(A(q)\big)^2

\left(\frac{8\eta^8(2\tau)}{\eta^4(\tau)}\right)^2+\left(\frac{\eta^8(\tau)}{\eta^4(2\tau)}\right)^2=\left(\frac{\eta^8(\tau)+32\eta^8(4\tau)}{\eta^4(2\tau)}\right)^2 Note also that \begin{align}A(q) &= 1+24\sum_{n=1}^\infty\frac{n q^n}{1+q^n}\\ &=\big(\vartheta_2(0,q)\big)^4+\big(\vartheta_2(0,q)\big)^4\\ &=\frac{\eta^8(\tau)+32\eta^8(4\tau)}{\eta^4(2\tau)}\end{align} where, in this particular instance, we let the Jacobi theta functions \vartheta_n(0,q) use q = e^{2\pi i\tau}

Monday, June 9, 2025

Entry 154

As an overview of the previous four entries, Ramanujan's theory of elliptic functions to alternative bases uses the hypergeometric function _2F_1(a,b;c;z) with a+b=c=1 for the cases a=\frac16, \frac14, \frac13, \frac12. This can be related to the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145 for n = 1,2,3,4. Consider the equations, 

\begin{align}\frac{_2F_1\big(\frac16,\frac56,1,\,1-\alpha_1\big)}{_2F_1\big(\frac16,\frac56,1,\,\alpha_1\big)} &=-\tau\sqrt{-1}\\ \frac{_2F_1\big(\frac14,\frac34,1,\,1-\alpha_2\big)}{_2F_1\big(\frac14,\frac34,1,\,\alpha_2\big)} &=-\tau\sqrt{-2}\\ \frac{_2F_1\big(\frac13,\frac23,1,\,1-\alpha_3\big)}{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)} &=-\tau\sqrt{-3}\\ \frac{_2F_1\big(\frac12,\frac12,1,\,1-\alpha_4\big)}{_2F_1\big(\frac12,\frac12,1,\,\alpha_4\big)} &=-\tau\sqrt{-4}\end{align} Then the \alpha_n can be solved and expressed in terms of the j_n(\tau) as discussed in the said entries.

Entry 153

Ramanujan's theory of elliptic functions to alternative bases can be related to the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145. Define,

\alpha_4(\tau) = \frac{16}{\left(\frac{\eta(\tau)}{\eta(4\tau)}\right)^{8}+16} = \left(\frac{\sqrt2\,\eta(\tau)\,\eta^2(4\tau)}{\eta^3(2\tau)}\right)^8

Let \alpha_4 = \alpha_4(\tau). Then we conjecture that,

\frac{_2F_1\big(\frac12,\frac12,1,\,1-\alpha_4\big)}{_2F_1\big(\frac12,\frac12,1,\,\alpha_4\big)}=-\tau\sqrt{-4} as well as

\begin{align}j_{4}(\tau) &=  \frac{16}{\alpha_4\,(1-\alpha_4)}\\ &= \left(\left(\frac{\eta(\tau)}{\eta(4\tau)}\right)^{4}+4^2 \left(\frac{\eta(4\tau)}{\eta(\tau)}\right)^{4}\right)^2 = \left(\frac{\eta^2(2\tau)}{\eta(\tau)\,\eta(4\tau)} \right)^{24}\\ &= \left(\frac{_2F_1\big(\frac12,\frac12,1,\,\alpha_4\big)}{\eta^2(\tau)} \times\frac{\eta(\tau)}{\eta(4\tau)}\right)^{24/5}\end{align}

Example. Let \tau =\sqrt{-3}. Then \alpha_4=(\sqrt3-\sqrt2)^4(\sqrt2-1)^4 solves \frac{_2F_1\big(\frac12,\frac12,1,\,1-\alpha_4\big)}{_2F_1\big(\frac12,\frac12,1,\,\alpha_4\big)}=\sqrt4\times\sqrt3 Alternatively and more familiar

\frac{_2F_1\big(\frac12,\frac12,1,\,1-\lambda(\sqrt{-r})\big)}{_2F_1\big(\frac12,\frac12,1,\,\lambda(\sqrt{-r})\big)}=\sqrt{r} where \lambda(\tau) is the modular lambda function.

Entry 152

We relate Ramanujan's theory of elliptic functions to alternative bases to the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145. Define,

\alpha_3(\tau) = \frac{27}{\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{12}+27} = \left(\frac{3}{\left(\frac{\eta(\tau/3)}{\eta(3\tau)}\right)^{3}+3}\right)^3

Let \alpha_3 = \alpha_3(\tau). Then we conjecture that,

\frac{_2F_1\big(\frac13,\frac23,1,\,1-\alpha_3\big)}{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)}=-\tau\sqrt{-3} as well as

\begin{align}j_{3}(\tau) &=  \frac{27}{\alpha_3\,(1-\alpha_3)}\\ &= \left(\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{6}+3^3 \left(\frac{\eta(3\tau)}{\eta(\tau)}\right)^{6}\right)^2\\ &= \left(\frac{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)}{\eta^2(\tau)} \times\frac{\eta(\tau)}{\eta(3\tau)}\right)^{24/4}\end{align}

Example. Let \tau =\sqrt{-3}. Then \alpha_3=\frac1{250}(187-171\cdot2^{1/3}+18\cdot2^{2/3}) solves \frac{_2F_1\big(\frac13,\frac23,1,\,1-\alpha_3\big)}{_2F_1\big(\frac13,\frac23,1,\,\alpha_3\big)}=\sqrt3\times\sqrt3

Entry 151

Ramanujan's theory of elliptic functions to alternative bases can be related to the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145. Define,

\alpha_2(\tau) = \frac{64}{\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{24}+64} = \left(\frac{8}{\left(\frac{\eta(\tau/2)}{\eta(2\tau)}\right)^{8}+8}\right)^2

Let \alpha_2 = \alpha_2(\tau). Then we conjecture that,

\frac{_2F_1\big(\frac14,\frac34,1,\,1-\alpha_2\big)}{_2F_1\big(\frac14,\frac34,1,\,\alpha_2\big)}=-\tau\sqrt{-2} as well as

\begin{align}j_{2}(\tau) &=  \frac{64}{\alpha_2\,(1-\alpha_2)}\\ &= \left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{12}+2^6 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{12}\right)^2\\ &= \left(\frac{_2F_1\big(\frac14,\frac34,1,\,\alpha_2\big)}{\eta^2(\tau)} \times\frac{\eta(\tau)}{\eta(2\tau)}\right)^{24/3}\end{align}

Example. Let \tau =\sqrt{-3}. Then \alpha_2=\frac1{3(2+\sqrt3)^2(13+4\sqrt3)} solves \frac{_2F_1\big(\frac14,\frac34,1,\,1-\alpha_2\big)}{_2F_1\big(\frac14,\frac34,1,\,\alpha_2\big)}=\sqrt2\times\sqrt3

Entry 150

Ramanujan's theory of elliptic functions to alternative bases considers the hypergeometric function _2F_1(a,b;c;z) with a+b=c=1 for the cases a=\frac16, \frac14, \frac13, \frac12. We can relate this to the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145 for n = 1,2,3,4. Define,

\alpha_1(\tau) = \frac12\left(1-\sqrt{1-\frac{1728}{j_{1}(\tau)}}\right)

where j = j_1(\tau) is the j-function. Let \alpha_1 = \alpha_1(\tau). Then we conjecture that,

\frac{_2F_1\big(\frac16,\frac56,1,\,1-\alpha_1\big)}{_2F_1\big(\frac16,\frac56,1,\,\alpha_1\big)}=-\tau\sqrt{-1} as well as

\begin{align}j_{1}(\tau)  &=\frac{432}{\alpha_1\,(1-\alpha_1)}\\ &=\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{8}+2^8 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{16}\right)^3\\  &=\left(\frac{_2F_1\big(\frac16,\frac56,1,\,\alpha_1\big)}{\eta^2(\tau)} \right)^{24/2}\end{align}

Example. Let \tau =\sqrt{-3}. Then \alpha_1=\frac1{5\sqrt5}\left(\frac{-1+\sqrt5}2\right)^5 solves \frac{_2F_1\big(\frac16,\frac56,1,\,1-\alpha_1\big)}{_2F_1\big(\frac16,\frac56,1,\,\alpha_1\big)}=\sqrt3 since -\tau\sqrt{-1}=-\sqrt3\, i\times i=\sqrt3.

Entry 149

This is the octic overview. Using the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145, if \tau are complex quadratics such that j_n(\tau) is a radical, then the following octics have a solvable Galois group, hence solvable in radicals \begin{align}\qquad{j_1}\; &=\frac{(x^2 + 5x + 1)^3(x^2 + 13x + 49)}x\\ {j_2}^2 &=\frac{j_2\,(-7x^4 - 196x^3 - 1666x^2 - 3860x + 49)+(x^2 + 14 x + 21)^4}x\\ {j_3}\; &=\frac{(x + 1)^6(x^2 + x + 7)}x\\ {j_4}^2 &=\frac{7 j_4\,(x + 1)^4+(x + 1)^7 (x - 7)}x \end{align}

It would be good if the one for j_2 can be simplified. They have discriminants (with another factor of D_2 suppressed),

\begin{align}D_1 &= -7^7(j_1-1728)^4\,{j_1}^4\\ D_2 &= -7^7(j_2-256)^4\,{j_2}^6 \\ D_3 &= -7^7(j_3-108)^3\,{j_3}^5\\ D_4 &= -7^7(j_4-64)^4\,{j_4}^{12}\quad \end{align}

Examples. Let \tau = \tfrac{1+\sqrt{-41/3}}2 so j_3(\tau) = -(4\sqrt3)^6. Let \tau = \tfrac{1+\sqrt{-89/3}}2 so j_3(\tau) = -(10\sqrt3)^6. Then \frac{(x + 1)^6(x^2 + x + 7)}x = -(4\sqrt3)^6\; \\ \frac{(x + 1)^6(x^2 + x + 7)}x =  -(10\sqrt3)^6 are octics both solvable in radicals. And also e^{\pi\sqrt{41/3}} =  (4\sqrt3)^6+41.993\dots\quad\\ e^{\pi\sqrt{89/3}} =  (10\sqrt3)^6+41.99997\dots There are infinitely many \tau but special ones such that j_n(\tau) are integers can be found in Entry 145.

Entry 148

This is the 7th-deg overview though only results by Klein for the j-function j = j_1(\tau) are known. In Klein's "On the Order-Seven Transformations of Elliptic Functions", he gave two elegant resolvents of degrees 7 and 8 in pages 306 and 313. Translated to more understandable notation, we have,

x\left(x^2+7\Big(\tfrac{1-\sqrt{-7}}{2}\Big)x+7\Big(\tfrac{1+\sqrt{-7}}{2}\Big)^3\right)^3 = j

y^8+14y^6+63y^4+70y^2-7 = y\sqrt{j-1728}

If \tau are complex quadratics such that j= j_1(\tau) is a radical, then the two resolvents have a solvable Galois group, hence solvable in radicals

Example. Let \tau = \tfrac{1+\sqrt{-163}}2, then j = -640320^3 and x\left(x^2+7\Big(\tfrac{1-\sqrt{-7}}{2}\Big)x+7\Big(\tfrac{1+\sqrt{-7}}{2}\Big)^3\right)^3  = -640320^3 is solvable in radicals. There are infinitely many such \tau and some can be found in Entry 145. Note also that \frac{(y^4 + 14y^3 + 63y^2 + 70y - 7)^2}y + 1728 = \frac{(y^2 + 5y + 1)^3 (y^2 + 13y + 49)}y where the octic on the RHS will appear in the next entry.

Sunday, June 8, 2025

Entry 147

This is the sextic overview. Using the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145, if \tau are complex quadratics such that j_n(\tau) is a radical, then the following sextics have a solvable Galois group, hence solvable in radicals \begin{align}\qquad j_1 &=\frac{(x^2 + 10x + 5)^3}x\\ \color{red}{j_2} &=\frac{(x+1)^4(x^2+6x+25)}{x}\\ \color{red}{{j_3}^2} &= \frac{j_3\,(2 x^6 + 29x^5 + 85x^4 + 50x^3) + 5^4 x^6}{(2x - 1)}\\ j_4 &=\frac{(x + 1)^5 (x + 5)}x \end{align}

with the ones in red by Joachim König. (It would be nice if the one for j_3 can be simplified.) They have discriminants,

\begin{align}D_1 &= 5^5\,(j_1-1728)^2\,{j_1}^4\\ D_2 &= 5^5\,(j_2-256)^3\,{j_2}^3 \\ D_3 &= 5^5(j_3-108)^3\,{j_3}^{11}\\ D_4 &= 5^5\,(j_4-64)^2\,{j_4}^4\qquad\end{align}

Examples. Let \tau = \tfrac{1+\sqrt{-163}}2 so j_1(\tau) = -640320^3. Let \tau = \tfrac{\sqrt{-58}}2 so j_2(\tau) = 396^4. Then \frac{(x^2 + 10x + 5)^3}x = -640320^3\\ \frac{(x+1)^4(x^2+6x+25)}x=396^4 are sextics both solvable in radicals. There are infinitely many \tau but special ones such that j_n(\tau) are integers can be found in Entry 145.

Entry 146

This is the quintic overview of Entries 140-144. Using the McKay-Thompson series j_n = j_n(\tau) for the Monster defined in Entry 145, if \tau are complex quadratics such that j_n(\tau) is a radical, then the following simple quintics have a solvable Galois group hence solvable in radicals \begin{align}x^5 + 5x^4 + 40x^3 &= j_1\\ x(x - 5)^4 &= j_2\\ x^3(x - 5)^2 &= j_3\\ x^5+5x &= \sqrt{\frac{64}{\sqrt{j_4}}-\sqrt{j_4}}\\ x^5 + 5x^3 - 10x^2 &= j_6\end{align} Example. Let \tau = \tfrac{1+\sqrt{-163}}2 so j_1(\tau) = -640320^3. Let \tau = \tfrac{\sqrt{-58}}2 so j_2(\tau) = 396^4. Then x^5 + 5x^4 + 40x^3 = -640320^3\\ x(x - 5)^4 = 396^4 are quintics both solvable in radicals. Of course, it is well-known that \qquad e^{\pi\sqrt{163}} = 640320^3+743.99999999999925\dots\\ e^{\pi\sqrt{58}} = 396^4-104.00000017\dotsThere are infinitely many \tau but special ones such that j_n(\tau) are integers can be found in Entry 145.

Entry 145

Summarizing the McKay-Thompson series of the Monster discussed in Entries 140-144, 

\begin{align}\quad j_1 &=\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{8}+2^8 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{16}\right)^3 \\ \quad j_{2} &=\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{12}+2^6 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{12}\right)^2 \\ \quad j_{3} &=\left(\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{6}+3^3 \left(\frac{\eta(3\tau)}{\eta(\tau)}\right)^{6}\right)^2 \\ \quad j_{4} &=\left(\left(\frac{\eta(\tau)}{\eta(4\tau)}\right)^{4} + 4^2 \left(\frac{\eta(4\tau)}{\eta(\tau)}\right)^{4}\right)^2 = \left(\frac{\eta^2(2\tau)}{\eta(\tau)\,\eta(4\tau)} \right)^{24}\\ j_{6} &=\left( \left(\frac{\eta(\tau)\,\eta(3\tau)}{\eta(2\tau)\,\eta(6\tau)}\right)^3 + 2^3\left(\frac{\eta(2\tau)\,\eta(6\tau)}{\eta(\tau)\,\eta(3\tau)}\right)^3\right)^2  \end{align}

where j_1(\tau) is the j-function. Let \tau be complex quadratics \tau = \tfrac12\sqrt{-d} or \tau =\frac12+ \sqrt{-d} such that the j_n(\tau) are radicals. For the following special \tau, then j_n(\tau) are integers 

j_1(\tau)\; \text{where}\; \tau=\sqrt{-d}\;\text{for}\; d = 1, 2, 3, 4, 7,\; \text{and}\, \tau =\tfrac{1+\sqrt{-d}}2\,\text{for}\; d =1, 3, 7, 11, 19, 127, 43, 67, 163.

j_2(\tau)\; \text{where}\; \tau=\tfrac{\sqrt{-d}}2\;\text{for}\; d = 4, 6, 10, 18, 22, 58,\; \text{and}\, \tau =\tfrac{1+\sqrt{-d}}2\,\text{for}\; d =5, 7, 9, 13, 25, 37.

j_3(\tau)\; \text{where}\; \tau=\tfrac{\sqrt{-d/3}}2\;\text{for}\; d = 4,8,16,20,\; \text{and}\, \tau =\tfrac{1+\sqrt{-d/3}}2\,\text{for}\; d =5, 9, 17, 25, 41, 49, 89.

j_4(\tau)\; \text{where}\; \tau=\tfrac{\sqrt{-d}}2\;\text{for}\; d = 3, 7,\; \text{and}\, \tau =\tfrac{1+\sqrt{-d}}2\,\text{for}\; d =1, 2, 4.

j_6(\tau)\; \text{where}\; \tau=\tfrac{\sqrt{-d/3}}2\;\text{for}\; d = 10, 14, 26, 34,\; \text{and}\, \tau =\tfrac{1+\sqrt{-d/3}}2\,\text{for}\; d = 7, 11, 19, 31, 59.

Saturday, June 7, 2025

Entry 144

Define the McKay-Thompson series of Class 6A for the Monster j_6 = j_{6}(\tau) =\left( \left(\frac{\eta(\tau)\,\eta(3\tau)}{\eta(2\tau)\,\eta(6\tau)}\right)^3 + 2^3\left(\frac{\eta(2\tau)\,\eta(6\tau)}{\eta(\tau)\,\eta(3\tau)}\right)^3\right)^2 and the quintic x^5-5\alpha x^3+10\alpha^2x-\alpha^2=0 where \small\alpha = -\dfrac1{j_6-32}. Alternatively (y^2+15)^2(y-5) = 32\big(j_6-32\big) z^5 + 5z^3 - 10z^2 = j_6

Conjecture: "If \tau is a complex quadratic such that j_6=j_{6}(\tau) is an algebraic number with j_6\neq 32, then the quintics above have a solvable Galois group."

Example: Let j_6\big(\tfrac{1\sqrt{-59/3}}2\big)=-1060^2, then (y^2+15)^2(y-5) = 32\big({-1060^2}-32\big) z^5 + 5z^3 - 10z^2=-1060^2 are solvable in radicals.

Entry 143

Define the McKay-Thompson series of Class 4A for the Monster j_4 = j_{4}(\tau) = \left(\left(\frac{\eta(\tau)}{\eta(4\tau)}\right)^{4} + 4^2 \left(\frac{\eta(4\tau)}{\eta(\tau)}\right)^{4}\right)^2 = \left(\frac{\eta^2(2\tau)}{\eta(\tau)\,\eta(4\tau)} \right)^{24} and the Bring-Jerrard quintic y^5+5y=\left(\frac{64}{\sqrt{j_4}}-\sqrt{j_4}\right)^{1/2}

Conjecture: "If \tau is a complex quadratic such that j_4=j_{4}(\tau) is an algebraic number, then the quintic above has a solvable Galois group."

Example: Let j_4\big(\tfrac12\sqrt{-7}\big)=2^{12}, then y^5+5y=\sqrt{-63} is solvable in radicals.

Entry 142

Define the McKay-Thompson series of Class 3A for the Monster j_3 = j_{3}(\tau) =\left(\left(\frac{\eta(\tau)}{\eta(3\tau)}\right)^{6}+3^3 \left(\frac{\eta(3\tau)}{\eta(\tau)}\right)^{6}\right)^2 and the Euler-Jerrard quintic x^5+5\sqrt{\alpha}\, x^2 -\sqrt{\alpha} = 0 Alternatively y^3(y-5)^2 =j_3

Conjecture: "If \tau is a complex quadratic such that j_3=j_{3}(\tau) is an algebraic number, then the quintic above has a solvable Galois group."

Example: Let j_3\big(\tfrac{1+\sqrt{-89/3}}2\big)=-300^3, then y^3(y-5)^2 = -300^3 is solvable in radicals.

Entry 141

Define the McKay-Thompson series of Class 2A for the Monster j_2 = j_{2}(\tau) =\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{12}+2^6 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{12}\right)^2 and the Bring-Jerrard quintic x^5-5\alpha x -\alpha=0 Alternatively y(y-5)^4 =j_2

Conjecture: "If \tau is a complex quadratic such that j_2=j_{2}(\tau) is an algebraic number, then the quintic above has a solvable Galois group."

Example: Let j_2\big(\tfrac12\sqrt{-10}\big)=12^4, then \quad y(y-5)^4=12^4\\ z^5-5z-12=0 are solvable in radicals.

Entry 140

Given the Dedekind eta function \eta(\tau) and define the McKay-Thompson series of Class 1A for the Monster, or better known as the j-function j j=j_1(\tau) =\left(\left(\frac{\eta(\tau)}{\eta(2\tau)}\right)^{8}+2^8 \left(\frac{\eta(2\tau)}{\eta(\tau)}\right)^{16}\right)^3 and the Brioschi quintic x^5-10\alpha x^3+45\alpha^2x-\alpha^2=0 where \small\alpha = -\dfrac1{j-1728}. Alternatively (y^2+20)^2(y-5) = j-1728 z^5 + 5z^4 + 40z^3=jConjecture: "If \tau is a complex quadratic such that j is an algebraic number j\neq1728, then the quintics above have a solvable Galois group." 

Example. Let j\big(\tfrac{1+\sqrt{-163}}2\big) = -640320^3 and \alpha = \tfrac1{640320^3+1728}, then x^5-10\alpha x^3+45\alpha^2x-\alpha^2=0 (y^2+20)^2(y-5) = -640320^3-1728 z^5 + 5z^4 + 40z^3=-640320^3 are quintics solvable in radicals. (In fact, they factor into a quadratic and a cubic.)

Entry 139

The general quintic can be reduced to the following one-parameter forms

x^5-10\alpha x^3+45\alpha^2x-\alpha^2=0\tag1

x^5-5\alpha x -\alpha = 0\tag2

x^5+5\sqrt{\alpha}\, x^2 -\sqrt{\alpha} = 0\tag3

\; x^5+5x+\left(\frac1{\sqrt{\alpha}}-64\sqrt{\alpha}\right)^{1/2} = 0\tag4

x^5-5\alpha x^3+10\alpha^2x-\alpha^2=0\tag5 with the last found by yours truly. They have neat discriminants

\begin{align}D_1 &= 5^5\,(1-1728\alpha)^2\,\alpha^8\\ D_2 &= 5^5\,(1-256\alpha)\,\alpha^4\\ D_3 &= 5^5\,(1-108\alpha)\,\alpha^2\\ D_4 &= 5^5\,(1+64\alpha)^2\,\alpha^{-1}\\ D_5 &= 5^5\,(1-36\alpha)(1-32\alpha)\,\alpha^8\end{align} The integers (1728, 256, 108, 64) appear in Ramanujan's theory of elliptic functions to alternative bases and we will connect these quintics to the McKay-Thompson series of class 1A, 2A, 3A, 4A, 6A for the Monster in subsequent entries. 

Entry 138

This summarizes the last several entries. Let fundamental discriminant d = 4m with class number h(-d)=2^k and even m = 2p for prime p. Previously, p \equiv 1\,\text{mod}\,4 and p \equiv 3\,\text{mod}\,4 were distinguished, but we can have a more unified approach. Given the modular lambda function \lambda(\tau) and define the three simple functions \begin{align}\alpha(n) &= \Big(n+\sqrt{n^2-1}\Big)^2\\ \beta(n) &= \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2\\ \gamma(n) &= \Big(n+\sqrt{n^2+1}\Big)^2 \end{align} If p \equiv 3\,\text{mod}\,4, then \frac1{\lambda(\sqrt{-2p})} = \alpha(n)\,\beta(n),\quad \text{where}\, n = \frac{2\sqrt{\lambda}+1-\lambda}{2\lambda^{1/4}\sqrt{1-\lambda}} If p \equiv 1\,\text{mod}\,4, then \frac1{\lambda(\sqrt{-2p})} = \alpha(n)\,\gamma(n),\quad \text{where}\, n = \frac{\lambda+1}{2\lambda^{1/4}\sqrt{1-\lambda}} with \lambda=\lambda(\tau) for simplicity and \alpha(n),\,\beta(n),\,\gamma(n) are units. Examples. Let m = 2p with class number 4

For p = 7,23 \begin{align}\frac1{\lambda(\sqrt{-14})} &= \alpha(n)\,\beta(n),\quad n=2(1+\sqrt2)\\ \frac1{\lambda(\sqrt{-46})} &= \alpha(n)\,\beta(n),\quad n=2(13+9\sqrt2) \end{align} For p=17,41 \begin{align}\frac1{\lambda(\sqrt{-34})} &= \alpha(n)\,\gamma(n),\quad n=3(4+\sqrt{17})\\ \frac1{\lambda(\sqrt{-82})} &= \alpha(n)\,\gamma(n),\quad n=3(51+8\sqrt{41})\end{align} One can observe that n is an algebraic number of degree half that of the class number. For m = 2p with class number 8, examples for p \equiv 3\,\text{mod}\,4 were given in Entry 136. For p \equiv 1\,\text{mod}\,4 like p=89, then n^4 - 8886 n^3 + 648 n^2 - 10314 n + 5751=0 and so on for other p.

Friday, June 6, 2025

Entry 137

This continues Entry 136. Recall the function \beta(n) = \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2 and the examples of n which were quartic roots. It turns out these n have additional properties which yield fundamental units U_k though I don't know why.

For p=31, let n_{\color{red}\pm} = 2(1+\sqrt2)^2\Big(1+3\sqrt2\color{red}{\pm}2\sqrt{1+4\sqrt2}\Big) or the two real roots of the quartic. Then \frac{\beta(n_{+})}{\beta(n_{-})} = U_{31}\sqrt{U_{62}} = (1520+273\sqrt{31})\,(4\sqrt2+\sqrt{31}) For p=47, let n_{\color{red}\pm} = 2(1+\sqrt2)^3\Big(9\color{red}{\pm}2\sqrt{9+8\sqrt2}\Big) or again the two real roots. Then \frac{\beta(n_{+})}{\beta(n_{-})} = U_{47}\sqrt{U_{94}} = (48+7\sqrt{47})\,(732\sqrt2+151\sqrt{47}) and so on for p = 31, 47, 79, 191, 239, 431.

Entry 136

Given fundamental discriminants d = 4m with class number h(-d)=8. Then there are exactly ten m = 2p for prime p, namely p \equiv 1\,\text{mod}\,4 = 89, 113, 233, 281 and p \equiv 3\,\text{mod}\,4 = 31, 47, 79, 191, 239, 431. The modular lambda function \lambda(\sqrt{-2p}) for both is a root of a deg-16 equation, but the latter is easier to factor into two deg-8 equations. Define the two simple functions \begin{align}\alpha(n) &= \Big(n+\sqrt{n^2-1}\Big)^2\\ \beta(n) &= \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2 \end{align} It seems for the p \equiv 3\,\text{mod}\,4, then \frac1{\lambda(\sqrt{-2p})} = \alpha(n)\,\beta(n) where \alpha(n),\beta(n) are octic units and n is just a quartic root given by n = \frac{2\sqrt{\lambda}+1-\lambda}{2\lambda^{1/4}\sqrt{1-\lambda}} with \lambda=\lambda(\tau) for simplicity. Examples,

Let p=31 and n= 2(1+\sqrt2)^2\Big(1+3\sqrt2+2\sqrt{1+4\sqrt2}\Big) then \frac1{\lambda(\sqrt{-62})} = \alpha(n)\,\beta(n) = \Big(n+\sqrt{n^2-1}\Big)^2 \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2 Let p=47 and  n= 2(1+\sqrt2)^3\Big(9+2\sqrt{9+8\sqrt2}\Big) then \frac1{\lambda(\sqrt{-94})} = \alpha(n)\,\beta(n) = \Big(n+\sqrt{n^2-1}\Big)^2 \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2 and so on for p = 31, 47, 79, 191, 239, 431. P.S. Note that solutions to the Pell-like equation x^2-2y^2 = -p appear in the nested radicals \sqrt{x+y\sqrt2\,} above, namely1^2-2\cdot4^2=-31\\ 9^2-2\cdot8^2=-47

Entry 135

Mathworld has a list of the modular lambda function \lambda(\tau) with the particular case \tau=\sqrt{-14} as the rather complicated \sqrt{\lambda(\sqrt{-14})}=-11-8\sqrt2-2(2+\sqrt2)\sqrt{5+4\sqrt2}\qquad \\\ \qquad+\sqrt{11+8\sqrt2}\,\Big(2+2\sqrt2+\sqrt2\sqrt{5+4\sqrt2}\Big)\qquad which is approximately 0.011208. It can be calculated in Mathematica or WolframAlpha as ModularLambda[tau]. However, we can simplify and factor that into two quartic units as \begin{align}\frac1{\lambda(\sqrt{-14})} & =\frac1{2^8}(8+3\sqrt7)\,(\sqrt7+\sqrt8)\,\Big(2^{1/4}+\sqrt{4+\sqrt2}\Big)^8\\ &=7960.423255\dots\end{align} It is then just a matter of getting the reciprocal and square roots. One can do so similarly for discriminants d=4m with class number h(-d)=4 and even m=14,62,142 as described in Entry 134.

Entry 134

Given fundamental discriminants d = 4m with class number h(-d)=4, there are exactly five m = 2p for prime p, namely p=7,17,23,41,71. The cases p = 17, 41 were in Entry 115 while p = 7,23,71 which are p \equiv 3\,\text{mod}\,4 will be tackled here. Define the two simple functions\begin{align}\alpha(n) &= \Big(n+\sqrt{n^2-1}\Big)^2\\ \beta(n) &= \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2 \end{align}and let\begin{align}n_1 &=2+2\sqrt2 \\ n_2 &= 26+18\sqrt2 \\ n_3 &=1450+1026\sqrt2\end{align}Then the first quartic unit can be an eighth power 

\begin{align}\alpha(n_1) &=\frac1{2^8}\Big(\sqrt{0+\sqrt2}+\sqrt{4+\sqrt2}\Big)^8\\ \alpha(n_2)  &=\frac1{2^8}\Big(\sqrt{4+3\sqrt2}+\sqrt{8+3\sqrt2}\Big)^8\\ \alpha(n_3)  &=\frac1{2^8}\Big(\sqrt{36+27\sqrt2}+\sqrt{40+27\sqrt2}\Big)^8 \end{align} while the second is a product of quadratic units 

\begin{align}\beta(n_1) &= U_{7}\,\sqrt{U_{14}}=\big(8+3\sqrt{7}\big) \big(2\sqrt2+\sqrt{7}\big) \\ \beta(n_2)  &= U_{23}\,\sqrt{U_{46}}=\big(25+5\sqrt{23}\big) \big(78\sqrt2+23\sqrt{23}\big) \\ \beta(n_3)  &= U_{71}\,\sqrt{U_{142}}=\big(3480+413\sqrt{71}\big) \big(1710\sqrt2+287\sqrt{71}\big) \\ \end{align} which gives the radical expressions of  \begin{align}\frac1{\lambda(\sqrt{-14})} &= \alpha(n_1)\,\beta(n_1),\quad n_1=2+2\sqrt2\\ \frac1{\lambda(\sqrt{-46})} &= \alpha(n_2)\,\beta(n_2),\quad n_2=26+18\sqrt2 \\ \frac1{\lambda(\sqrt{-142})} &= \alpha(n_3)\,\beta(n_3),\quad n_3=1450+1026\sqrt2 \end{align} And since \beta(n) = \Big(\sqrt{n^2-2}+\sqrt{n^2-1}\Big)^2, then they are also nested radicals that use only \sqrt2

Entry 133

Given fundamental discriminants d=4m with class number h(-d)=2, there are exactly four even m = 6, 10, 22, 58. The most well-known is m=58 because of the near-integer \quad e^{\pi\sqrt{58}} = 396^4-104.00000017\dots and the appearance of 396^4 in the denominator of Ramanujan's famous 1/\pi formula. These m=2p for prime p have other interesting properties. Recall the modular lambda function \lambda(\tau) also discussed in Entry 112 \lambda(\tau) = \left(\frac{\sqrt2\,\eta\big(\tfrac12\tau\big)\,\eta^2\big(2\tau\big)}{\eta^3(\tau)}\right)^8 We focus on m=2p for prime p = 3\,\text{mod}\,4 hence \begin{align}\frac1{\sqrt{\lambda(\sqrt{-6})}} &= U_3\sqrt{U_6} = (2+\sqrt3)(\sqrt2+\sqrt3)\\ \frac1{\sqrt{\lambda(\sqrt{-22})}} &= U_{11}\sqrt{U_{22}}= (10+3\sqrt{11})(7\sqrt2+3\sqrt{11}) \end{align} with fundamental units U_n. However, special d with class number h(-d)=2^k surprisingly can be expressed by nested radicals using only the square root of 2. So,\begin{align}\frac1{\sqrt{\lambda(\sqrt{-6})}} &= (1+\sqrt2)^2+\sqrt{1+ (1+\sqrt2)^4}\\ \frac1{\sqrt{\lambda(\sqrt{-22})}} &=  (1+\sqrt2)^6+\sqrt{1+ (1+\sqrt2)^{12}} \end{align}\quad Similar behavior can also be observed for 2p for p=7,23,71 which now have class number 4.

Tuesday, June 3, 2025

Entry 132

Given _2F_1(a,b;c;z) and Dedekind eta function \eta(\tau) where \tau = \frac{1+n\sqrt{-3}}2 for positive integer n. Then for type a+b=c=\color{blue}{\tfrac56} \begin{align}&\,_2F_1\big(\tfrac12,\tfrac13;\tfrac56;(1-2\delta_1)^2\big),\quad\;\delta_1 = \delta_2\\ &\,_2F_1\big(\tfrac13,\tfrac12;\tfrac56;(1-2\delta_2)^2\big),\quad\;\frac1{\delta_2}-1=\sqrt{\frac1{27}\left(\tfrac{\eta\big(\frac{\tau+1}{3}\big)}{\eta(\tau)}\right)^{12}}\\ &\,_2F_1\big(\tfrac14,\tfrac7{12};\tfrac56;(1-2\delta_3)^2\big),\quad\color{red}{\delta_3 =\,?} \\ &\,_2F_1\big(\tfrac16,\tfrac23;\tfrac56;(1-2\delta_4)^2\big),\quad\;\frac1{\delta_4}-1\,=\,\frac1{27}\left(\tfrac{\eta\big(\frac{\tau+1}{3}\big)}{\eta(\tau)}\right)^{12}\end{align} For this type, there are infinitely many hypergeometrics such that both (z_1, z_2) in _2F_1(a,b;c;z_1) = z_2 are algebraic numbers when n is a positive integer. Note that  _2F_1\big(\tfrac12,\tfrac13;\tfrac56;z\big) =\,_2F_1\big(\tfrac13,\tfrac12;\tfrac56;z\big) so the first form is superfluous. Examples: Let \tau = \frac{1+5\sqrt{-3}}2, _2F_1\Big(\frac13,\frac12;\frac56;\frac45\Big)=\;\frac35\sqrt5 \quad _2F_1\Big(\frac16,\frac23;\frac56;\frac{80}{81}\Big)=\frac35\,(9\sqrt5)^{1/3}

Entry 131

Given _2F_1(a,b;c;z) and Dedekind eta function \eta(\tau) where \tau = \frac{1+n\sqrt{-1}}2 for positive integer n. Then for type a+b=c=\color{blue}{\tfrac34} \begin{align}&\,_2F_1\big(\tfrac14,\tfrac12;\tfrac34;(1-2\gamma_1)^2\big), \quad\frac1{\gamma_1}-1=\sqrt{-\frac1{64}\Big(\tfrac{\sqrt2\,\eta(2\tau)}{\eta(\tau)}\Big)^{24}}\\ &\,_2F_1\big(\tfrac16,\tfrac7{12};\tfrac34;(1-2\gamma_2)^2\big),\quad\color{red}{\gamma_2 =\,?} \\ &\,_2F_1\big(\tfrac18,\tfrac58;\tfrac34;(1-2\gamma_3)^2\big),\quad\frac1{\gamma_3}-1\,=\, -\frac1{64}\Big(\tfrac{\sqrt2\,\eta(2\tau)}{\eta(\tau)}\Big)^{24}\\ &\,_2F_1\big(\tfrac1{12},\tfrac23;\tfrac34;(1-2\gamma_4)^2\big),\quad\color{red}{\gamma_4 =\,?}\end{align} For this type, there are infinitely many hypergeometrics such that both (z_1, z_2) in _2F_1(a,b;c;z_1) = z_2 are algebraic numbers when n is a positive integer. Examples: Let \tau = \frac{1+5\sqrt{-1}}2

_2F_1\Big(\frac14,\frac12;\frac34;\frac{80}{81}\Big)=\frac95

\quad _2F_1\Big(\frac18,\frac58;\frac34;\frac{25920}{25921}\Big)=\frac35\,161^{1/4}

Sunday, June 1, 2025

Entry 130

Given _2F_1(a,b;c;z) and j-function j = j(\tau) where \tau = \frac{1+n\sqrt{-3}}2 for positive integer n. Then for type a+b=c=\color{blue}{\tfrac23} \begin{align}&\,_2F_1\big(\tfrac14,\tfrac5{12};\tfrac23;(1-2\beta_1)^2\big),\qquad \color{red}{\beta_1 =\,?} \\ &\,_2F_1\big(\tfrac16,\tfrac12;\tfrac23;(1-2\beta_2)^2\big),\qquad \frac{1}{\beta_2}-1=\sqrt{\frac{-2j+1728-2\sqrt{j(j-1728)}}{1728}}\\ &\,_2F_1\big(\tfrac18,\tfrac{13}{24};\tfrac23;(1-2\beta_3)^2\big),\qquad \color{red}{\beta_3 =\,?} \\ &\,_2F_1\big(\tfrac1{12},\tfrac7{12};\tfrac23;(1-2\beta_4)^2\big),\qquad \frac{1}{\beta_4}-1=\frac{-2j+1728-2\sqrt{j(j-1728)}}{1728}\\\end{align} For this type, there are infinitely many hypergeometrics such that both (z_1, z_2) in _2F_1(a,b;c;z_1) = z_2 are algebraic numbers when n is a positive integer. Examples: Let \tau = \frac{1+3\sqrt{-3}}2, _2F_1\Big(\frac16,\frac12;\frac23;\frac{125}{128}\Big) =\frac43\times2^{1/6} _2F_1\Big(\frac1{12},\frac7{12};\frac23;\frac{64000}{64009}\Big) =\frac23\times253^{1/6} Let \tau = \frac{1+5\sqrt{-3}}2, _2F_1\left(\frac16,\frac12;\frac23;\Big(\frac45\Big)^2\Big(\frac{15-\sqrt5}{11}\Big)^3\right) =\frac35(5+4\sqrt5)^{1/6}

Entry 129

Given _2F_1(a,b;c;z) where a+b=c. The previous four (Entries 125-128) discuss closed-forms and can be neatly summarized as type a+b=c=\color{blue}{\tfrac12}  \begin{align}&\,_2F_1\big(\tfrac14,\tfrac14;\tfrac12;(1-2\alpha_1)^2\big),\qquad \frac1{\alpha_1}-1=\frac1{16}\Big(\tfrac{\eta(\tau/4)}{\eta(\tau)}\Big)^8,\qquad \tau_1=n\sqrt{-4}\\ &\,_2F_1\big(\tfrac16,\tfrac13;\tfrac12;(1-2\alpha_2)^2\big),\qquad \frac1{\alpha_2}-1=\frac1{27}\Big(\tfrac{\eta(\tau/3)}{\eta(\tau)}\Big)^{12},\qquad \tau_2=n\sqrt{-3}\\ &\,_2F_1\big(\tfrac18,\tfrac38;\tfrac12;(1-2\alpha_3)^2\big),\qquad \frac1{\alpha_3}-1=\frac1{64}\Big(\tfrac{\eta(\tau/2)}{\eta(\tau)}\Big)^{24},\qquad \tau_3=n\sqrt{-2}\\ &\,_2F_1\big(\tfrac1{12},\tfrac5{12};\tfrac12;(1-2\alpha_4)^2\big),\quad\; \frac{1}{\alpha_4(1-\alpha_4)}=\frac1{432}\,j(\tau),\qquad\tau_4=n\sqrt{-1}\end{align} For this type, there are infinitely many hypergeometrics such that both (z_1, z_2) in _2F_1(a,b;c;z_1) = z_2 are algebraic numbers when n is a positive integer. However, for the parameters c=\frac12, \frac23,\frac34. \frac56, it seems only the first is easy. For type a+b=c=\color{blue}{\tfrac23}, it's more challenging and will be discussed in the next entry.

Entry 128

Assume \tau=n\sqrt{-\color{blue}{4}} for some positive integer n. Given _2F_1(a,b;c;z) where a+b=c=\frac12 for the case a=\tfrac1{4}. Let z_1 = (1-2w)^2 where w is w=\frac{16}{16+\Big(\tfrac{\eta(\tau/4)}{\eta(\tau)}\Big)^8} Then (z_1, z_2) are algebraic numbers in

_2F_1\left(\tfrac14,\tfrac14;\tfrac12;z_1\right) = z_2

Examples: 

If n=2 so \tau=2\sqrt{-4}, then,

_2F_1\left(\frac14,\frac14;\frac12;\,\frac{9\,(3+\sqrt2)^2}{(1+\sqrt2)^6}\right)=\frac38\big(2+\sqrt2\big) 

If n=3 so \tau=3\sqrt{-4}, then,

\quad _2F_1\left(\frac14,\frac14;\frac12;\,\frac{8\sqrt3}{(2+\sqrt3)^2}\right)=\frac23\big(3+2\sqrt3\big)^{1/2}