then, (d34d2d28)4−4=(d21d4d2d28)2(d34d2d28)4+4=(d52d21d4d28)2
so a−4=b,a+4=c. This a,b,c also belong to the class where a(τ)=−a(12+τ) and b(τ)=−c(12+τ). We then have the six level 8 moonshine functions,
j8A(τ)=(d2d4d1d8)8=acbj8B(τ)=(d24d2d8)12=√j4A(2τ)j8C(τ)=√j4B(τ)=4√j2A(2τ)=√j8A(τ)−4√j8A(τ)j8D(τ)=(d2d8)4j8E(τ)=(d34d2d28)4=aj8F(τ)=(d4d8)6
Example: j8C(14√−58)=396
II. Relations: Using S1, this a,b,c explains all of the four trinomial identities of level 8 (prefixed with t8) by Somos. They also obey the relation,
(bca+64abc)+2a=bca+acb+abc
In general, (bca+(b−c)2abc)+2a=bca+acb+abc
where b−c=8. Or in terms of named functions of level 4 and 8,
j4B+2j8E=j4D+j8A+j8A′
where, j8A′(τ)=−j8A(12+τ)=(d1d24d22d8)8
No comments:
Post a Comment