Level 18 has a
second triple but it does not include purely moonshine functions. Define
dk=η(kτ) with the
Dedekind eta function η(τ). Then
(d1d46d9d22d23d218)2−1=(d31d26d39d32d23d318)(d1d46d9d22d23d218)2+3=(d63d1d2d26d9d18) Expressed as the triple of eta quotients (a,b,c) such that a−1=ba+3=c so (m,n)=(−1,3). Then
abc=(d1d26d9d2d23d18)6bca=(d3d6)8acb=(d23d26d1d2d9d18)2 where
(a,b,c) are the McKay-Thompson series of class 18C (
A215412). They obey
(16abc+bca)+2a=abc+bca+acb but
abc is a non-monster function with expansion (
A128512).
No comments:
Post a Comment