Level 24
j24A(τ)=(d24d212d2d6d8d24)3=√j12A(2τ)=j24D(τ)+4j24D(τ)=j24H(τ)+1j24H(τ)j24B(τ)=(d2d4d6d12d1d3d8d24)2j24C(τ)=(d21d6d28d12d2d23d4d224)j24D(τ)=(d2d6d8d24)=√j12E(2τ)j24E(τ)=(d212d6d24)4=√j12D(2τ)j24F(τ)=(d8d12d4d24)3=√j12F(2τ)j24G(τ)=(d4d8d12d24)=√j12G(2τ)j24H(τ)=(d6d8d2d24)2=√j12H(2τ)j24I(τ)=(d2d23d28d12d21d4d6d224)j24J(τ)=(d12d24)2=√j12J(2τ) The "important" functions (that aren't just square roots) are j24C and j24I. First define the auxiliary non-monster functions, U=(d1d6d8d12d2d3d4d24)4V=(d22d3d8d212d1d24d26d24)4 I. Let a1=j24C,m=1,n=3, then,
j24B=a1+mna1+(m+n)j12G=a1+m+m(m−n)a1+m−(2m−n)U=a1+n+n(m−n)a1+n+(m−2n) as well as, j12C=j24B+(m−n)2j24B−2=j12G+n2j12G=U+m2U+4
II. Let a2=j24I,m=1,n=−1, then,
j24B=a2+mna2+(m+n)j12F=a2+m+m(m−n)a2+m−(2m−n)V=a2+n+n(m−n)a2+n+(m−2n) as well as, j12C=j24B+(m−n)2j24B−2=j12F+n2j12F=V+m2V−4 These two families imply the two linear relations, j12C+2j24C=j24B+j12G+U−2j12C+2j24I=j24B+j12F+V−2
However, there is one linear relation using only monster functions,
j12C−j12F−j12G+j12E−2j12I=2(j24B−j24C−j24I−3) Note that,
j12C=j12F+1j12F=j12G+9j12Gj12E=j12I−3j12I−2
No comments:
Post a Comment