Processing math: 100%

Thursday, October 31, 2019

Level 12, part 1

Level 12 is very special because, given an eta quotient a, we can find a+mi as an eta quotient for four different integer values mi. However, that also makes the situation more complicated than in other levels. Let,
a(τ)=(d24d6d2d212)2,b(τ)=d33d4d1d312,c(τ)=d31d4d26d22d3d312
such that a+1=b,a3=c. And the monster functions, j12A(τ)=(d22d26d1d3d4d12)6j12B(τ)=(d1d4d6d2d3d12)4=acbj12C(τ)=j6A(2τ)=j12F(τ)+1j12F(τ)=j12G(τ)+9j12G(τ)j12D(τ)=(d26d3d12)8=3j4A(3τ)j12E(τ)=(d1d3d4d12)2=bcaj12F(τ)=(d4d6d2d12)6=j6B(2τ)j12G(τ)=(d2d4d6d12)2=j6D(2τ)j12H(τ)=(d3d4d1d12)4=abcj12I(τ)=(d24d6d2d212)2=aj12J(τ)=(d6d12)4=j6F(2τ)

Example: j12C(1217/6)=198

Let a=j12I,m=1,n=3, then,
j12E=a3a2j12B=a+1+4a+15j12H=a3+12a3+7
as well as,
j12A=j12E+42j12E+8=j12B+32j12B+10=j12H+1j12H+2
which implies the linear relation between 5 monster functions,
j12A+2j12I=j12B+j12E+j12H+8
The functions j12I and  j12B can be used for level 12, while versions of j12E and  j12H will be useful in level 24.

No comments:

Post a Comment