a(τ)=(d24d6d2d212)2,b(τ)=d33d4d1d312,c(τ)=d31d4d26d22d3d312
such that a+1=b,a−3=c. And the monster functions, j12A(τ)=(d22d26d1d3d4d12)6j12B(τ)=(d1d4d6d2d3d12)4=acbj12C(τ)=√j6A(2τ)=j12F(τ)+1j12F(τ)=j12G(τ)+9j12G(τ)j12D(τ)=(d26d3d12)8=3√j4A(3τ)j12E(τ)=(d1d3d4d12)2=bcaj12F(τ)=(d4d6d2d12)6=√j6B(2τ)j12G(τ)=(d2d4d6d12)2=√j6D(2τ)j12H(τ)=(d3d4d1d12)4=abcj12I(τ)=(d24d6d2d212)2=aj12J(τ)=(d6d12)4=√j6F(2τ)
Example: j12C(12√−17/6)=198
Let a=j12I,m=1,n=−3, then,
j12E=a−3a−2j12B=a+1+4a+1−5j12H=a−3+12a−3+7
as well as,
j12A=j12E+42j12E+8=j12B+32j12B+10=j12H+1j12H+2
which implies the linear relation between 5 monster functions,
j12A+2j12I=j12B+j12E+j12H+8
The functions j12I and j12B can be used for level 12, while versions of j12E and j12H will be useful in level 24.
No comments:
Post a Comment