then they obey a lot of relationships, $$\frac{a}{b c}= \frac{d}{e f}$$
$$a+1 = b,\quad a+3 = c\\ d+1=e,\quad d-1=f$$
$$\frac{ab}c+ \frac{bc}a+ \frac{ac}{b} - \left(\frac{de}f+ \frac{ef}d+ \frac{df}{e}\right) = 2(a-d) = 2(b-e) = 2(c-f-4)$$ as well as
$$\left(\frac{4a}{bc}+\frac{bc}{a}\right)+2a = \color{red}{\frac{ab}c}+ \frac{bc}a+ \frac{ac}{b}\\ \left(\frac{4d}{ef}+\frac{ef}{d}\right)+2d = \color{red}{\frac{de}f}+ \frac{ef}d+ \frac{df}{e}\\ \;\quad\left(\frac{4a}{bc}+\frac{bc}{a}\right)+\frac{2cd}{e} - 2 = \color{red}{\frac{ab}c}+\color{red}{\frac{de}f}+\left(\frac{cd}{e}-\frac{3e}{cd}\right)$$ and so on. Combining the last three relations by getting rid of the red non-moonshine terms yields the most complicated of the \(9\) dependencies found by Conway, Norton, and Atkin such that the monster functions span a linear space of \(172-9=163\) dimensions.
No comments:
Post a Comment