a(τ)=(f24f26f236f2f412f18)b(τ)=(f23f4f36f1f9f212)f26c(τ)=(f1f4f26f9f36f2f23f212f18)f26
such that a+1=b,a−1=c. Then define, j12F(τ)=f46=(d6d12)4=bcak72A(τ)=f46+4f46k72B(τ)=(f1f4f26f9f36f2f23f212f18)2=acbk72C(τ)=(f23f4f36f1f9f212)2=acbk72D(τ)=(f24f26f236f2f412f18)=a
Then we have an analogous linear relation,
k72A+2k72D=k72B+k72C+j12F+2
Curiously, notice that the form of the last three k72 appear in other functions,
1j36A(τ)=(d1d4d26d9d36d2d23d212d18)21k36A(τ)=(d23d4d36d1d9d212)21√j18A(2τ)=(d24d26d236d2d412d18)
No comments:
Post a Comment