I. The null Jacobi theta functions (with z=0) are,
ϑ3(q)=∞∑m=−∞qn2=η5(2τ)η2(τ)η2(4τ)ϑ4(q)=∞∑m=−∞(−1)nqn2=η2(τ)η(2τ)ϑ2(q)=∞∑m=−∞q(n+1/2)2=2η2(4τ)η(2τ)
II. The Borwein cubic theta functions are,
a(q)=∞∑m,n=−∞qm2+mn+n2=η3(τ)η(3τ)+9η3(9τ)η(3τ)b(q)=∞∑m,n=−∞ζm−nqm2+mn+n2=η3(τ)η(3τ)c(q)=∞∑m,n=−∞q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2=3η3(3τ)η(τ)
with a cube root of unity ζ=e2πi/3.
ϑ3(q)=∞∑m=−∞qn2=η5(2τ)η2(τ)η2(4τ)ϑ4(q)=∞∑m=−∞(−1)nqn2=η2(τ)η(2τ)ϑ2(q)=∞∑m=−∞q(n+1/2)2=2η2(4τ)η(2τ)
II. The Borwein cubic theta functions are,
a(q)=∞∑m,n=−∞qm2+mn+n2=η3(τ)η(3τ)+9η3(9τ)η(3τ)b(q)=∞∑m,n=−∞ζm−nqm2+mn+n2=η3(τ)η(3τ)c(q)=∞∑m,n=−∞q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2=3η3(3τ)η(τ)
with a cube root of unity ζ=e2πi/3.
III. The derived Jacobi theta functions are,
d(q)=ϑ44(q)+2ϑ42(q)=η8(τ)η4(2τ)+32η8(4τ)η4(2τ)e(q)=ϑ44(q)=η8(τ)η4(2τ)f(q)=12ϑ42(q1/2)=8η8(2τ)η4(τ) These obey beautiful relations discussed in Entry 39.
d(q)=ϑ44(q)+2ϑ42(q)=η8(τ)η4(2τ)+32η8(4τ)η4(2τ)e(q)=ϑ44(q)=η8(τ)η4(2τ)f(q)=12ϑ42(q1/2)=8η8(2τ)η4(τ) These obey beautiful relations discussed in Entry 39.
No comments:
Post a Comment