can be given by x=4arctanu1 and z=4arctanu2 where the ui are appropriate roots of the quartica2u4+1a(1−3a2)u3+3(1−a2)u2+a(3−a2)u−1=0
and a=tan(y/4) for real 0<y≤1. For example, let y=1 so a=tan(1/4)≈0.2553, then u1,u2 are the two real roots of the quartic.
Alternatively, let u1,u2 be the same roots and define the Pythagorean triplesp1,p2,p3=2u1,u21−1,u21+1q1,q2,q3=2u2,u22−1,u22+1r1,r2,r3=2a,a2−1,a2+1
Then for some constant 0<a<(−1+√2), or 1<a<(1+√2), we have(p1p2(q21−q22)p23q23)1/4+(q1q2(p21−p22)p23q23)1/4=(4r1r2(r21−r22)r43)1/12
The equality holds, but I don't know why it works.
No comments:
Post a Comment