Processing math: 100%

Friday, September 30, 2016

Entry 31

This was inspired by Entry 30. My version is a solution to (12sinxcosz)1/4+(12cosxsinz)1/4=(sin2y)1/12
can be given by x=4arctanu1 and z=4arctanu2 where the ui are appropriate roots of the quartica2u4+1a(13a2)u3+3(1a2)u2+a(3a2)u1=0
and a=tan(y/4) for real 0<y1. For example, let y=1 so a=tan(1/4)0.2553, then u1,u2 are the two real roots of the quartic.

Alternatively, let u1,u2 be the same roots and define the Pythagorean triplesp1,p2,p3=2u1,u211,u21+1q1,q2,q3=2u2,u221,u22+1r1,r2,r3=2a,a21,a2+1
Then for some constant 0<a<(1+2), or 1<a<(1+2), we have(p1p2(q21q22)p23q23)1/4+(q1q2(p21p22)p23q23)1/4=(4r1r2(r21r22)r43)1/12
The equality holds, but I don't know why it works.

No comments:

Post a Comment