Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, September 23, 2016

Entry 14

Ramanujan's sum of cubes identity is defined by the generating functions, n=0anxn=1+53x+9x2R1n=0bnxn=226x12x2R1n=0cnxn=2+8x10x2R1 where R1=182x82x2+x3. Then a3n+b3n=c3n+(1)n It turns out the an,bn,cn can also be expressed as an=9p2+176pq851q2=1,135,11151,bn=4(3p256pq+263q2)=2,138,11468,cn=2(5p290pq+409q2)=2,172,14258,dn=(p285q2)=1,1,1,1 with p,q chosen to satisfy the Pell equation p285q2=1. (Actually, p,q are half-integers since one can use p285q2=4.) But Entry 13 shows there are infinitely many quadratic parametrizations to (2). Thus we can find similar generating functions such as n=0anxn=9(4175602x+x2)R2n=0bnxn=8(56611315x+x2)R2n=0cnxn=6(877+6898x+x2)R2 where R2=1+184899x184899x2+x3. Then a3n+b3n=c3n+1 and its quadratic parameterization an=3(3p2104pq+909q2)=3753,693875529,bn=2(4p2135pq+1119q2)=4528,837313192,cn=6(p237pq+348q2)=5262,972979926,dn=p2321q2=1,1,1, with p,q chosen to satisfy p2321q2=1. So there are infinitely many sum of cubes identity analogous to Ramanujan's.

No comments:

Post a Comment