Here is another family (now based on d=−10) of pi approximations with a form consistent to the one (based on d=−58) in Entry 16. Define the fundamental units U2=1+√2U5=1+√52U10=3+√10U30=11+2√30 Then with increasing precision, accurate to 5,10,14,18 digits π≈1√10ln[26(U5)12]π≈12√10ln[29(U2U5√U10)6]π≈13√10ln[26(U5)12(U30)2(√3+√64+√−1+√64)24]π≈14√10ln[29(U2U5√2U10)3(√v+1+√v)12] where v=2−1/2(U2)2(U5)3.
If I remember correctly, I think Ramanujan found the first two members. The expression inside the log function is again the exact value of (η(τ)η(2τ))24 where η(τ) is the Dedekind eta function, and τ=√−102,τ=2√−102,τ=3√−102,τ=4√−102, respectively.
No comments:
Post a Comment