Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, September 23, 2016

Entry 17

Here is another family (now based on d=10) of pi approximations with a form consistent to the one (based on d=58) in Entry 16. Define the fundamental units U2=1+2U5=1+52U10=3+10U30=11+230 Then with increasing precision, accurate to 5,10,14,18 digits π110ln[26(U5)12]π1210ln[29(U2U5U10)6]π1310ln[26(U5)12(U30)2(3+64+1+64)24]π1410ln[29(U2U52U10)3(v+1+v)12] where v=21/2(U2)2(U5)3.

If I remember correctly, I think Ramanujan found the first two members. The expression inside the log function is again the exact value of (η(τ)η(2τ))24 where  η(τ) is the Dedekind eta function, and  τ=102,τ=2102,τ=3102,τ=4102, respectively.
 

No comments:

Post a Comment