Sunday, September 25, 2016

Entry 22

The Ramanujan tau function τ(n) is given by the coefficients of the q-expansion of the Dedekind eta function η(z)'s 24th power.  Let q=e2πiz, thenη(z)24=n=1τ(n)qn=q24q2+252q31472q4+4830q56048q616744q7+
Let n be a prime p. Ramanujan observed the remarkable congruenceτ(p)1p110 mod 691
For example241211=691×32521311=691×25648301511=691×70656167441711=691×2861568
and so on. More generally, what he observed wasτ(n)σ11(n) mod 691
where σk(n) is the sum of the kth powers of the divisors of n.

No comments:

Post a Comment