The
Ramanujan tau function τ(n) is given by the coefficients of the
q-expansion of the
Dedekind eta function η(z)'s
24th power. Let
q=e2πiz, then
η(z)24=∞∑n=1τ(n)qn=q−24q2+252q3−1472q4+4830q5−6048q6−16744q7+…Let
n be a prime
p. Ramanujan observed the remarkable congruence
τ(p)−1−p11≡0 mod 691For example
−24−1−211=−691×3252−1−311=−691×2564830−1−511=−691×70656−16744−1−711=−691×2861568and so on. More generally, what he observed was
τ(n)≡σ11(n) mod 691where
σk(n) is the sum of the
kth powers of the divisors of
n.
No comments:
Post a Comment