Loading [MathJax]/jax/output/HTML-CSS/jax.js

Friday, September 23, 2016

Entry 13

In Question 441 of the Journal of the Indian Mathematical Society (JIMS), Ramanujan asked,

"Show that (3x2+5xy5y2)3+(4x24xy+6y2)3+(5x25xy3y2)3=(6x24xy+4y2)3 and find other quadratic expressions satisfying similar relations."

There are in fact infinitely many such quadratic expressions. Use the identity (by yours truly) (ax2v1xy+bwy2)3+(bx2+v1xy+awy2)3+(cx2+v2xy+dwy2)3+(dx2v2xy+cwy2)3=(a3+b3+c3+d3)(x2+wy2)3 where v1=c2d2,v2=a2b2, and w=(a+b)(c+d). Thus all we need is an initial solution to a3+b3+c3+d3=0 and the identity guarantees an infinite more. 

No comments:

Post a Comment