Friday, September 23, 2016

Entry 13

In Question 441 of the Journal of the Indian Mathematical Society (JIMS), Ramanujan asked,

"Show that (3x2+5xy5y2)3+(4x24xy+6y2)3+(5x25xy3y2)3=(6x24xy+4y2)3 and find other quadratic expressions satisfying similar relations."

There are in fact infinitely many such quadratic expressions. For general a3+b3+c3+d3=0 use the identity A3+B3+C3+D3=(a3+b3+c3+d3)(x2+wy2)3
and A,B,C,D are quadratic forms, A=ax2v1xy+bwy2B=bx2+v1xy+awy2C=cx2+v2xy+dwy2D=dx2v2xy+cwy2
 where (v1,v2,w)=(c2d2,a2b2,(a+b)(c+d)).

No comments:

Post a Comment