Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, May 14, 2025

Entry 66

Define dk=η(kτ) with the Dedekind eta function η(τ).

The McKay-Thompson series of class 1A for the Monster (A007240), disregarding the constant term 744, is the well-known j-function j(τ). Given the three Weber modular functions fn 
j1A(τ)=(f(τ)16+f1(τ)16+f2(τ)162)3=((d1d2)8+28(d2d1)16)3 They tend to be cubes, but not always. Examples: 
j1A(1+672)=123(2121)3=52803j1A(1+1632)=123(23121)3=6403203 while the two highest d with class number h(d)=2 are
j1A(1+4032)=123((5301+147013)21)3j1A(1+4272)=123((7215+92461)21)3 and so on, though if d is a multiple of 3 then it is almost a cube j1A(1+152)=33U25(5+45)3j1A(1+512)=483U217(5+17)3j1A(1+1232)=4803U241(8+41)3j1A(1+2672)=2403U289(625+5389)3 where Un are fundamental units, U5=1+52U17=4+17U41=32+541U89=500+5389 or fundamental solutions to the Pell equation x2ny2=1 with the first as the golden ratio ϕ =U5. These will appear later in Class 3B.

No comments:

Post a Comment