Processing math: 100%

Saturday, May 24, 2025

Entry 79

Level 7. Define dk=η(kτ) with Dedekind eta function η(kτ) and the McKay-Thompson series of class 7B for the Monster j7B(τ)=(d1d7)4

Examples. We select d=7m with class number h(d)=2 and find m=5,13,61 such that the following are special quadratic irrationals j7B(1+5/72)=7U25=7(1+52)2j7B(1+13/72)=7U213=7(3+132)2j7B(1+61/72)=7U261=7(39+5612)2

as they involve fundamental units Un. These are analogous to the examples in Level 3B which have the form 33U2n. The last implies the integer (7U61+7/7U61)2=7×392=223+1

and solutions to the curve x31=7y2 as discussed in the previous entry.

No comments:

Post a Comment